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Personal Note:

Thank you for considering my TQB package in support of a position with the NCEA IRIS Program. There
are a lot of highly skilled and committed scientists working in the group, and NCEA more broadly, and |
would consider myself lucky to have the opportunity to help them develop and achieve their goals. |
have been blessed to work with and learn from some truly great people, and consider my success and
progress a representation and direct result of these many collaborations, and of course a lot of hard
work. The environmental challenges we face are immense but not impossible to address. | hope to
continue playing a part in efforts to make a difference in the health of people and our environment. This
core principle has always guided my professional and personal choices, and my sense is that there will
be many opportunities to make this difference with NCEA.
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Curriculum vitae (CV)
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PAMELA D. NOYES
U.S. EPA, Office of Chemical Safety and Pollution Prevention (OCSPP),
Office of Science Coordination and Policy (OSCP), Washington, DC 20460
Ph: 202.564.3043 ~ Email: noyes.pamela@epa.gov

EDUCATION

Ph.D., Duke University, Toxicology and Chemistry, Certificate in Toxicology, 2013
M.S., Johns Hopkins University, Environmental Science, Honors, 2002
Coursework, chemistry, biological sciences, ecology, modeling, statistics

George Mason University, 2003-05
Montgomery College, 1992-94

B.S., University of Maryland, Finance, 1990

HONORS AND AWARDS

2016 Best Postdoctoral Publication Award, Society of Toxicology

Ruth L. Kirschstein NIH/National Research Service Award, Postdoctoral Trainee, Oregon State, 2013-15
EPA STAR Graduate Fellowship, U.S. EPA, 2010-13

Ake Bergman and Bo Jansson Award, Excellence in Presentations, BFR Meeting, 2013

Hutzinger Award, Qutstanding Student Presentation, Dioxin Meeting, 2010

Promotion, GS-14, U.S. EPA/ORD/OSP, 2002

PROFESSIONAL EXPERIENCE

Toxicologist/Biologist {GS-14; 40 hrs/wk) 01/2016 — Present
U.S. Environmental Protection Agency

Office of Chemical Safety and Pollution Prevention (OCSPP)

Office of Science Coordination and Policy {OSCP)

Endocrine Disruptor Screening Program {EDSP)

Washington, DC

Work with EPA ORD laboratories, program offices, and NIEHS to review in vitro and in vivo studies and
develop methods to evaluate chemicals for effects on the endocrine systems of humans and wildlife

Leading the development of EPA’s framework for screening and testing chemicals for thyroid disruption,
including approaches for integrating in vitro high-throughput screening (HTS) assays into chemical
hazard and risk assessments

Managing the design and conduct of a large scientific review of in vitro and in vivo studies to identify
reference chemicals and potency values to characterize chemical effects on the thyroid system

EDSP representative on OECD Test Guidelines Program workgroups, including the Validation
Management Group for Ecotoxicity Testing (VMG-eco) and VMG for non-animal testing (NA)

EDSP representative on the Interagency Coordinating Committee on the Validation of Alternative
Methods (ICCVAM) under the NIEHS National Toxicology Program Interagency Center for the Evaluation
of Alternative Toxicological Methods (NICEATM) to develop and implement new and revised toxicity
tests for risk assessment
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Assist in managing the technical direction of contracts under the EDSP screening battery that require a
suite of in vitro and in vivo mammalian, fish, and amphibian toxicity assays

Worked with colleagues in OSCP to design approaches using adverse outcome pathway (AOP)
frameworks to integrate in vitro HTS assays with in vivo data generated under the EDSP screening
battery to facilitate evaluating chemicals for estrogen and androgen pathway bioactivity

Represent EPA’s Endocrine Disruptor Screening Program (EDSP) science and policy positions in meetings
with external stakeholders and EPA program office and ORD partners

Environmental Health Scientist {40 hrs/wk) 05/2015 - 12/2015
Chevron Energy Technology Company
Houston, TX

Identified research opportunities, managed contracts, and provided technical guidance to support
Chevron’s environmental planning, including proposals to use zebrafish HTS platforms for toxicity testing

Prepared risk assessments and fate and effects studies for site remediation under RCRA, CERCLA, and
state regulations; assisted in planning, fieldwork oversight, and data review

Conducted a technical review of lead and mercury dose-response models for use in risk assessment

Evaluated the human health and environmental safety of several fire retardant foams to inform the
selection criteria for broad-scale use on Chevron oil and gas platforms

Participated on multi-disciplinary teams in regions where gaps exist in environmental regulations,
including efforts to assess/mitigate risks to metals leachate from pipelines in developing Asian countries

Coordinator, Ecological Risk Assessment Forum({GS-14; 40 hrs/wk) 12/2003 - 05/2006
U.S. EPA, Office of Research & Development (ORD)

National Center for Environmental Assessment (NCEA)

Washington, DC

Coordinated and participated on multi-disciplinary teams to develop EPA guidance on high impact
ecological and human health risk issues for chemicals. Major projects included:

— Human health and environmental risk assessment framework for metals

— Eco-risk methods for applying toxic equivalency factors (TEFs) for PCBs, dioxins, and furans

— White papers on: population level eco-risk assessment, criteria for evaluating chemicals for
persistence, bioaccumulation, and toxicity (PBT), and extrapolating data across different levels of
biological organization

Developed dose-response assessments for human and wildlife health to support the metals risk
assessment framework

Identified and synthesized data and information from academia, industry, and the government for use in
guidance to understand chemical exposure and effects relationships

Managed contracts to support development of the metals risk framework; certified as ORD project
officer for Assistance Agreements, external contracting, and peer review

Officiated and organized external scientific workshops to deliberate on forum projects

Worked with the EPA Science Advisory Board (SAB) to carry out formal review of the scientific
underpinnings of the metals risk assessment framework

ED_002435_00006144-00005



Pamela D. Noyes
CURRICULUM VITAE December 2016

Engaged with external government partners, including OMB, DOE, and DOD, to ensure their input in
decision-making and guidance development

Regularly briefed senior EPA management on project status, schedule, and issues

Environmental Scientist {GS-14 (06/2002)/GS-13; 40 hrs/wk) 09/2001 -12/2003
U.S. EPA, ORD

Office of Science Policy (OSP)

Washington, DC

Managed ORD’s involvement in policy and regulatory development by the EPA Office of Water (OW) and
Office of Pesticide Programs (OPP)

Represented ORD and participated on workgroups with program offices and ORD science and policy
staff to develop EPA policies, regulations, guidance on water- and pesticide-related issues

Spearheaded ORD’s participation in OW’s regulation of concentrated animal feeding operations (CAFQOs)
under the CWA

Coordinated ORD’s input on OPP’s cumulative and aggregate risk policies for pesticides under FIFRA and
the FQPA

Harmonized and prepared written summaries of ORD technical and policy positions on clean water and
pesticide regulations and guidances

Presented ORD’s positions on clean water and pesticide regulations and guidances in workgroup
meetings and to senior management

Worked with ORD and OW scientists and policy staff to:

— develop white papers on CWA and SDWA issues linked to CAFOs, notably analyses of water and
food borne iliness data

— design risk-hazard screening methods, including GIS mapping to assess point source discharges,
for use in establishing CWA Effluent Limitation Guidelines (ELGs)

— expand phylogenetic mapping techniques to model the potential spread of invasive fish species
for use in establishing ELGs for aquaculture operations

— Assist OW in preparing environmental benefits assessments under the ELG program for cooling
water intake structures, construction/development sector, and meat handlers

— Examine research gaps and data needs under EPA’s TMDL program to support watershed
assessments

Chemical Review Manager {GS-13; 40 hrs/wk) 09/1998 - 09/2001
U.S. EPA, Office of Pesticide Programs {OPP)

Special Review and Reregistration Division {SRRD)

Arlington, VA

Managed chemical safety evaluations of pesticides, including atrazine, terbufos, and carbofuran, subject
to Special Review and reregistration under FIFRA, FFDCA, and FQPA. Involved working on multi-
disciplinary teams of regulators, scientists, and economists; Responsibilities included:

— Preparing human health and ecological risk assessments, including dose-response assessments, of
pesticide effects on human and wildlife health

— Preparing reregistration eligibility documents (REDs) summarizing human and wildlife risk- and
benefit-based management decisions for pesticides

— Reviewing and synthesizing biological effects data from industry, government, and academia
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— Developing strategies and worked with chemical companies to reduce risk from pesticides

— Working with Office of Water and registrants to ensure satisfaction with SDWA Maximum
Contaminant Levels (MCLs) for pesticides

— Regularly meeting with industry, trade associations, and environmental groups to discuss and
address pesticide use and risk issues

— Responding to comments/inquiries from industry, trade associations, environmental groups, the
public, and press on pesticide science and policy issues

— Presenting EPA positions and regulatory decisions at public meetings and briefings

— Preparing correspondence, briefing summaries, and federal register notices; Regularly briefed
senior management on project status and issues of concern

Biologist {40 hrs/wk) 10/1993 - 09/1998
Jellinek, Schwartz & Connolly, Inc.
Arlington, VA

Worked with scientists and regulatory specialists to develop and implement integrated environmental
health and safety standards for S.C. Johnson to comply with TSCA and FIFRA

Assisted with the preparation and submission of pesticide registration applications (under FIFRA, FFDCA,
FQPA) and PMNs {under TSCA)

Reviewed environmental health effects studies placed with contract laboratories to support pesticide
registrations; assisted in developing dose-response assessments

RESEARCH EXPERIENCE

Postdoctoral Research Fellow 10/2013 - 06/2015
Oregon State University, Corvallis, OR

Environmental & Molecular Toxicology

Laboratory of Dr. Robert Tanguay

Research Activities —

Assisted in the design and implementation of the labs automated zebrafish HTS platforms and custom
built tools for developmental toxicity and behavioral testing

Completed a large study to characterize flame retardant effects on vertebrate development using
zebrafish HTS platforms to measure initiating events leading to morphological deformities and
maladaptive behavior

Collaborated with internal and external colleagues to develop methodologies and custom scriptsin R
language to evaluate, distill, and present multi-outcome zebrafish HTS data

Assisted in the development of a predictive endocrine bioactivity framework using the zebrafish HTS
platform and whole genome transcriptomic/microarray profiling

Participated in a study to characterize the modes of action of the antimicrobial agent triclosan by
anchoring adverse phenotypes in zebrafish to transcriptomic changes using whole genome microarray

Initiated examination of chemical-induced mechanisms of disrupted thyroid bioactivity and
developmental toxicity in zebrafish using HTS platforms, behavior assays, PCR, and gene-specific
oligonucleotide {(morpholino) knockdown approaches
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Mentored and trained students in professional career-academic interests, laboratory research methods,
and standard operating procedures, and served as a thesis committee member

Doctoral Research Fellow 08/2006 - 05/2013
Duke University, Durham, NC

integrated Toxicology and Environmental Health Program

Laboratory of Dr. Heather Stapleton

Research Activities —

Designed and conducted toxicity studies to characterize the uptake, metabolism, and endocrine
disrupting effects of flame retardant chemicals on different life-stages of fishes

Developed and published new methods to measure circulating thyroid hormones in fish using liquid
chromatography coupled with tandem mass spectrometry (LC/MS/MS)

Routinely conducted RNA extractions and gPCR; applied degenerate primer design to sequence partial
cDNAs of deiodinases in the fathead minnow; sequences published in NCBI GenBank

Developed and published methods using LC/MS/MS to measure the activity of deiodinase enzymes in
different organ systems of fish, including regular isolation of microsomal and S9 fractions

Experienced in histological examinations of the fish thyroid and liver; identified new histopathology in
livers of developing fish exposed to PBDEs

Measured and published effects of PBDEs on reproductive endpoints (gonadal somatic index; GSI) of
adult male fathead minnows using published EPA methods

Prepared and published an in-depth review of flame retardant effects on the thyroid and reproductive
systems of biota, and the potential cross-talk between these pathways

Prepared sediment, water, and tissue samples for analysis of a variety of environmental contaminants,
including PBDEs, PCBs, pesticides, and other organic substances

Conducted chemical analysis of sediment, biosolid, and tissue samples using gas chromatography mass
spectrometry (GC/MS) and LC/MS/MS; analyzed data using ChemStation and MassHunter software

Constructed a large fish culture system to house and breed fathead minnows for toxicity testing;
assisted in the design and setup of the labs zebrafish colony system

Assisted in sampling houses and children for flame retardants as part of Dr. Stapleton’s NIH R01 grant to
examine flame retardant exposures and thyroid effects among children

Employed radio-immunoassay (RIA) and enzyme-linked immunosorbent assay {ELISA) methods to
measure circulating thyroid hormones in humans, rodents, and fish

Trained and mentored undergraduate and fellow graduate students in laboratory chemistry and
toxicology research, fish culturing methodologies, and standard operating procedures

Provided advice to other laboratories and scientists on methods developed for measuring the effects of
thyroid hormone disrupting PBDEs on fishes

Made presentations to visiting faculty, contributors, and senior department/graduate school officials on
lab research programs and results
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ASSISTANCE TO SCIENTIFIC COMMUNITY
Invited Guest Editor, Special Issue, Journal of Current Zoology, 07/2014 - 09/2015

Collaborative series of papers devoted to the impacts of chemical exposures and climate change on
wildlife health with special focus on endocrine disrupting chemicals

Invited Book Chapter Co-author, Comprehensive Toxicology, 3 Edition, 05/2015 — Present

Noyes PD, Garcia GR, Tanguay RL. 2016. Zebrafish in developmental toxicology: Linking genetics,
“omic” technologies, behavior and high throughput testing [In review].

SETAC Pellston Workgroup, 02/2011-02/2013

Developed approaches using Adverse Outcome Pathway (AOP) frameworks to evaluate the
influence of climate change on chemical toxicity; developed an AOP to describe interactive effects of
thyroid disrupting chemicals and climate change on amphibian populations

Invited Co-author, United Nations Environment Programme (UNEP), Norwegian EPA, 06/2013-12/2013

Prepared review and analysis of bioaccumulation potential of the PBDE flame retardant DecaBDE for
listing under the Stockholm Convention on Persistent Organic Pollutants (POPs)

Journal Peer Review

Regularly peer review toxicology and chemistry studies submitted to scientific journals; prepare
written reviews, including recommendations for acceptance, revisions, and additional testing

Volunteer Diver, National Aquarium in Baltimore, 1999-2005

Prepared food and conducted in-water feedings of animals in coral reef and ray fish exhibits;
Presented to student groups and public on coral reef and estuarine exhibits/ecosystems; one full
day every other week

PEER-REVIEW PUBLICATIONS

Noyes PD, Garcia GR, Tanguay RL. 2016. Zebrafish as an in vivo model for sustainable chemical design.
Green Chem 18:6410-6430.

Browne P, Noyes PD, Casey WM, Dix DJ. 2016. Evaluating endocrine activity of chemicals using adverse
outcome pathways. Environ Health Perspect [In Review].

Haggard DE, Noyes PD, Waters KE, Tanguay RL. 2016. Phenotypically anchored transcriptome profiling of
developmental exposure to the antimicrobial agent, triclosan, reveals hepatotoxicity in embryonic
zebrafish. Toxico! App!/ Pharm 308:32-45.

Garcia GR, Noyes PD, Tanguay RL. 2016. Advancements in zebrafish applications in 21% century
toxicology. Pharmaco! Ther 161:11-21.

Noyes PD, Haggard DE, Gonnerman GD, Tanguay RL. 2015. Advanced morphological-behavioral test
platform reveals neurodevelopmental defects in embryonic zebrafish exposed to halogenated and
organophosphate flame retardants. Toxico!/ Sci 145(1): 177-195.

Noyes PD and Lema SC. 2015. Editorial: Heating up the environmental context of chemical pollution:
Ecotoxicology in a changing global climate. Curr Zoo/ 61(4): 614-616.

Noyes PD and Lema SC. 2015. Forecasting the impacts of chemical pollution and climate change
interactions on the health of wildlife. Curr Zool/ 61{4): 669-689.
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Noyes PD, Stapleton HM. 2014. PBDE flame retardants: Toxicokinetics and thyroid endocrine disruption
in fish. Endo Disruptors 2: 2943001-2943025.

Noyes PD, Lema SC, Roberts SC, Cooper EM, Stapleton HM. 2014. Rapid method for the measurement of
circulating thyroid hormones in low volumes of fish plasma by LC-ESI/MS/MS. Anal Bioanal Chem 406(3):
715-726.

Muzzio AM, Noyes PD, Stapleton HM, Lema SC. 2014. Tissue distribution and thyroid hormone effects on
mRNA abundance for membrane transporters Mct8, Mct10, and organic anion-transporting
polypeptides (Oatps) in a teleost fish. Comp Biochem Physiol A 167:77-89.

Noyes PD, Lema SC, Macaulay LJ, Douglas NK, Stapleton HM. 2013. Low level exposure to the flame
retardant BDE-209 reduces thyroid hormone levels and disrupts thyroid signaling in fathead minnows.
Environ Sci Technol 47(17):10012-10021.

Hooper MJ, Ankley GT, Cristol DA, Maryoung LA, Noyes PD, Pinkerton KE. 2013. Interactions between
chemical and climate stressors: A role for mechanistic toxicology in assessing climate change risks.
Environ Toxicol Chem 32(1):32-48.

Noyes PD, Hinton DE, Stapleton HM. 2011. Accumulation and debromination of decabromodiphenyl
ether (BDE-209) in juvenile fathead minnows (Pimephales promelas) induces thyroid disruption and liver
alterations. 2011. Toxicol Sci 122(2):265-274.

Roberts SC, Noyes PD, Gallagher EP, Stapleton HM. 2011. Species-specific differences and structure-
activity relationships in the debromination of PBDE congeners in three fish species. Environ Sci Technol
45(5):1999-2005.

Noyes PD, McElwee MK, Miller HD, Clark BW, Van Tiem LA, Walcott KC, Erwin KN, Levin ED. 2009. The
toxicology of climate change: Environmental contaminants in a warming world. Fnviron Int 35(6):971-
986.

Noyes PD, Kelly SM, Mitchelmore CL, Stapleton HM. 2010. Characterizing the in vitro hepatic
biotransformation of the flame retardant BDE-99 by common carp. Aquatic Tox 97(2):142-150.

Timme-Laragy AR, Noyes PD, Buhler DR, Di Giulio RT. 2008. CYP1B1 knockdown does not alter
synergistic developmental toxicity of polycyclic aromatic hydrocarbons in zebrafish. Mar Environ Res
66(1):85-87.

SCIENTIFIC PRESENTATIONS

Seminars

09/2015. US EPA, Office of Chemical Safety and Pollution Prevention, Office of Science Coordination and
Policy. Topic: Flame retardants: Predicting biological effects using fish models.

01/2015. Oregon State University, Superfund Research Program Colloquium. Topic: Use of advanced
testing methods in zebrafish to examine the developmental toxicity of flame retardants and structure-
activity relationships

12/2014. Chevron Energy Technology Company. Topic: Using zebrafish as a biological sensor to
characterize chemical bioactivity and improve environmental performance

05/2013. Oregon State University, Corvallis, OR. Topic: PBDE Flame Retardants: Accumulation,
metabolism, and disrupted thyroid regulation in fish

04/2013. Duke University, Durham, NC. Topic: PBDE Flame Retardants: metabolism and disrupted

ED_002435_00006144-00010



Pamela D. Noyes
CURRICULUM VITAE December 2016

thyroid regulation in early and adult life stages of fish.

02/2012. US EPA, Mid-Continent Ecology Division, Duluth, MN. Topic: Interactive effects of climate
change and contaminant exposures on toxicity and wildlife health

Meeting Presentations

SOT, New Orleans, LA, 3/2016. Phenotypically-anchored transcriptomic response in embryonic zebrafish
developmentally exposed to triclosan [Poster]

SOT, San Diego, CA, 3/2015. Flame retardants: Advanced morphological-behavioral test platform using
zebrafish reveals developmental defects [Poster]

Flame Retardants Meeting, San Francisco, CA, 4/2013. Low-level exposures to BDE-209 reduce thyroid
hormones and disrupt thyroid signaling in fish [Platform]

SETAC, Boston, MA, 11/2011. SETAC Pellston results: Mechanistic toxicology in the face of climate
change [Platform]

SETAC, Portland, OR, 11/2010. Effects of BDE-209 on thyroid regulation in early life stages of fish
[Platform]

Dioxin Symposium, San Antonio, TX, 9/2010. PBDE effects on thyroid regulation in early life stages of fish
[Platform]

SETAC, New Orleans, LA, 11/2009. Characterizing PBDE metabolism in fish [Poster]
Flame Retardants Meeting, Ottawa, ON, 5/2009. Debromination of BDE-209 by fathead minnow [Poster]

TEACHING

Instructor, Scientific Skills and Ethics, Oregon State University, 2014

Instructor, Introductory Chemistry & Toxicology; Principles of Endocrine Disruption, Duke, 2010-11
Teaching Assistant, Chemical Fate of Organic Compounds, Duke, 2006-07

Teaching Assistant, Environmental Toxicology & Chemistry, Duke, 2006-07

Teaching Assistant, Estuarine and Coastal Ecology, George Mason, 2005

THESIS COMMITTEES (Honor Undergrads)

Kimberly Britsch, Oregon State University, Biology Honors, 2014
Cory Gerlach, Oregon State University, Toxicology & Biotechnology, Honors College, 2014

PROFESSIONAL ASSOCIATIONS

Society of Environmental Toxicology and Chemistry (SETAC)
Society of Toxicology (SOT)
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Peer Review Publication 1:

Noyes PD, Haggard DE, Gonnerman GD, Tanguay RL. 2015. Advanced morphological-behavioral test
platform reveals neurodevelopmental defects in embryonic zebrafish exposed to halogenated and
organophosphate flame retardants. Toxicological Sciences 145(1): 177-195.

Basis for inclusion and scientific impact:

Millions of pounds of flame-retardants (FRs) are used every year in consumer products and
industrial applications with the intent of preventing fire-related casualties. FR chemicals include a
variety of chemical structures, and biomonitoring data in humans and wildlife show bicaccumulation of
a number of these chemicals. Like many of the tens of thousands of chemicals used today, they have
been deployed into products with limited understanding of their toxicity potential.

Dr. Robert Tanguay’s laboratory at Oregon State University, where | was working under a
NIH/NRSA postdoctoral fellowship, has been a global leader in developing embryonic zebrafish high-
throughput screening (HTS) assay technologies. This study conducted in Dr. Tanguay’s lab is the first to
use zebrafish HTS assays to test a large suite of diverse FR chemical structures in tandem by measuring
numerous morphological and behavioral outcomes. Over 90% of the chemicals tested were bioactive at
one or more concentrations and endpoints evaluated. These data have not only been critical in
characterizing our understanding of FR bioactivity, but have played a major role in validating the
reliability of zebrafish HTS platforms and computational toxicology approaches to evaluate multi-
dimensional data outputs. It is the first study to incorporate novel photomotor response (PMR)
behavioral testing of FRs in the very earliest life-stages of zebrafish development when neurological
structural patterning is being initiated. Another major contribution of the study was development of
computational approaches to understand and compare chemical structure and bioactivity relationships.
We were able to group and identify structural features of the FRs tested that impaired normal
development with high potency. Thus, this platform approach is significant because it allows for a
guantitative tool to design inherently safer chemicals that confer less bioactivity.

| was the lead in study design, conduct, trouble-shooting, and R coding and data analysis. |
worked closely with internal coauthors, including Dr. Tanguay, my postdoctoral mentor, and consulted
with external colleagues, to design and carryout the multi-dimensional data analyses. | determined
major findings from the study, prepared the manuscript, and managed the peer review.

| was awarded SOT’s Best Postdoctoral Publication Award in 2016 for this work. | presented the
study results at the SOT meeting in 2016, including at a luncheon awards ceremony. This was one of the
featured articles by the Editor of Toxicological Sciences at its publication
(http://toxsci.oxfordjournals.org/content/145/1/1.full). It was also highlighted by EPA in March 2016 on
the agency’s external blog site (https://blog.epa.gov/blog/2016/03/one-fish-two-fish-test-fish-control-
fish-award-winning-high-throughput-research-on-flame-retardants-in-zebrafish/).
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Advanced Morphological — Behavioral Test Platform
Reveals Neurodevelopmental Defects in Embryonic

Zebrafish Exposed to Comprehensive Suite of

alogenated and Organophosphate Flame Retardants

Pamela D. Noyes, Derik E. Haggard, Greg D. Gonnerman, and

Robert L. Tanguay’

Department of Environmental & Molecular Toxicology, Environmental Health Sciences Center, and the
Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, Oregon 97331

"To whom correspondence should be addressed. Fax: $41-737-6074. E-mail: robert. tanguay@oregonstate. edu.

ABSTRACT

The increased use of flammable plastics and electronic devices along with stricter fire safety standards has led to the heavy
use of flame retardant chemicals in many consumer, commercial, and industrial products. Although flame retardant use
has increased, a great deal of uncertainty surrounds their safety with some evidence showing toxicity and risk to human
and environmental health. Recent efforts have focused on designing high-throughput biological platforms with
nonmammalian models to evaluate and priovitize chemicals with limited hazard information. To complement these
efforts, this study used a new morphological and behavioral testing platform with embryonic zebrafish to characterize the
developmental toxicity of 44 halogenated and organophosphate flame retardants, including several of their known
metabolites. Zebrafish were exposed 1o flame retardants from 6 to 120 h post fertilization (hpf) across concentrations
spanning 4 orders of magnitude {eg, 6.4 nM to 64 uM). Flame retardant effects on survival and development were evaluated
at 24 and 120 hpf, and neurobehavioral changes were measured using 2 photomotor response (PMR) assays. Compared to
controls, 93% (41/44) of flame retardants studied elicited adverse effects among one or more of the binassays and
concentrations tested with the aryl phosphate ester (APE)-based mono-isopropylated triaryl phosphate and the
brominated-bisphenol-A analog tetrabromobisphenol-A producing the greatest array of malformations. Hierarchical
clustering showed that APE flame retardants with isopropyl, butyl, and cresyl substituents on phenyl rings clustered tightly
and were particularly potent. Both PMR assays were highly predictive of morphological defects supporting their use as
nonlethal means of evaluating teratogenicity that could allow for additional evaluations of long-term or delayed effects in
older animals. Taken together, evidence presented here indicates that zebrafish neurcdevelopment is highly sensitive to
many flame retardants currently in use and can be used to understand potential vulnerabilities to human health.

Key words: Firemaster 550; neurotoxicity; PEDE; TBBPA; TDCPP; TCFP; TCEP; TPP, teratogenicity

Dramatic increases in the use of flammable plastics and
electronics coupled with stricter fire safety standards have
resulted in the heavy use of flame retardant chemicals.
Flame retardants today represent a diverse array of chemi-

suppressing properties. Increased public, media, and govern-
ment scrutiny of flame retardanis in recent years has called
attention to their design, use, and safety. Two of the com-
monly used classes of flame retardants, brominated flame

cals with differing structural characteristics and fire retardants (BFRs) and organophosphate-based flame
© The Author 2015. Published by Cxford University Press on behalf of the Society of Toxicology.
Allvights reserved. For Permissions, please e-mail: jowrnals. permissions@oup.com
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retardants, which may include both halogenated and nonha-
logenated structural forms, are widely used in a variety of
consumer products, such as furniture, textiles, electronics,
and building materials.

Polybrominated diphenyl ether {(PBDE) flame retardants
{Tabie 1} were additive BFRs used in furniture and electronic
products. They were marketed as 3 major comnmmercial mixtures:

TABLE 1. Structures of Targeted BFRs

PentaBDE, OctaBDE, and DecaBDE. PentaBDE was a heteroge-
neous mixture of tetra-, penta-, and hexaBDEs that was added
mostly to polyurethane foams and textiles, and to a lesser ex-
tent in epoxy and phenolic resins and polyesters. The vast ma-
jority {approxirnately 95%) of PentaBDE was used in North
America (United States and Canada) in the manufacture of poly-
urethane foams in cushioning. As a result of this greater use in

Abbreviations Name/CAS no Structure

Abbreviations Name/CAS no

Structure

A
BDE-3 p-bromodipheny! J/
ether [101-55-3] B~
BDE-15 pp-dibromodiphenyl
ether [2050-47-7]
Br
BDE-47 '-tetrabromo- /A\\ \f\\
wenyl ether i .
[5436-43-1] BE'/A # Br ~ Br
Br
BDE-99 ] X Brﬁo\i\i
bromediphenyl 7 N
ether [60348-60-9]  Bf Br Br
BDE-100 2.7 44 6-penta- /C\/[ \)\
bromodiphenyl \ //\
ether [189084-64-8] Br Br
Br
gr. SN S
BDE-153 2,2 A4 55 hepta- m |
bromodiphenyl ay # e N B
ether [68631-49-2] Br
BDE-154 2,2 44 56 -hexa-
bromodiphenyl
ether [207122-15-4] Br
Br Br
A A BT
BDE-183 2,2/ 344 55 - hepta- |
bromodiphenyl Br \T/ By A Br
ether [68631-49-2] Br

Br

ether [1163-19-5] B NN

Decabromodiphenyl
Br

3-0OH-BDE-47"

5-OH-BDE-477

65-0OH-BDE-47"

2,4,6-TRP*

HBCD

TB

TB

BB 2-ethylhexyl-tetra-

3-hydroxy-2,2'4,4'-
tetrabromodi-

Br
joue!
Br / Br = Br

OH

phenyl ether

5-hydrozy-2,2'4.4'-
tefrabromodi-
phenyl ether

6-hydroxy-2,2'4,4/-
tetrabromodi-
phenyl ether

2,4,6-tribromo-
phenol [118-79-6]

Hezabromocyclo- Br. S
dodecane
{Commercial sub-
stance}
[3194-55-6]

bromobernzoate
[183658-27-7]

X /\/\

\/BrBr

BPA 3,%,5,5' -tetrabromo-

bisphenol A

[79-94-7] H 7 0H

BPA-DBPE  Tetrabroro-bisphe-
nol A-2,3-
dibromopropyl
ether [21850-44-2]

B Ay

PH Bis(2-ethylhexyl)- /(\ "0
tetrabromo- \/\(70 -
phthalate Br

[26040-51-7] O

Metabolites are denoted with
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North America, PentaBDE congeners have bsen detected at
higher levels in the U.S. population than in European and Asian
populations {fohnson-Restrepo and Xannan, 2009; Toms et al,
2011). The production and use of Penta and OctaBDE has been
phased out in the United States and banned in the EU since the
mid-2000s due to concerns about thelr persistence, bicaccumula-
tion, and toxicity. In 2009, these products were also listed as per-
sistent organic pollutants under the UN Stockholm Convention
{UINEP, 2009). DecaBDE contains the fully brominat
decabromodiphenyl ether (BDE-209; approximately 97%) with
trace amounts of nonaBDEs. It is an additive in high impact poly-
styrene, polyolefins, and polypropylene used in electronic equip-
ment {eg, plastic housing), automobiles, airplanes, construction
and building materials {eg, wires, cables, pipes), and textiles. In
the United States, DecaBDE was subject to a voluntary phase-out
at the end of 2013. It has also been restricted from use in electri-
cal and electronic equipment since 2008 under the EU Restriction
of Hazardous Substances Directive. At present, DecaBDE is not
subj o restrictions in any Asian countries.

With the phase-out of Penta and OctaBDEs, decreasing trends
or a leveling off of some PBDEs are now being measured in some
biota and environmental media {(Law et al, 2014). Nonetheless,
constituents of PentaBDE, including BDE-47 (2,2'4.4-tetraBDE},
BDE-99 (2,7 4,4 5-pentaBDE), BOE-100 (2,744 6-pentaBDE), BDE-
153 (2,7',4,4,5,5-hexaRDE), and BDE-154 {2,244',5,6-hexaBDE),
coniinue to be dominant PBDEs detected in humans and wildlife
dwide despite the generally more limited use of PentaBDE
outside the United States (Law et al, 2014). Sources of these con-

4 congener

WO

geners are likely related to the ongoing use and recycling of prod-
ucts that contain PentaBDE as well as their high environmental
persistence and long-range global transport potential {de Wit
et al., 2010). Another source of lower MW PBDEs may be attribut-
able to the breakdown of higher PBDEs, such as BDE-209 which
can undergo photolytic (Stapleton and Dodder, 2008} and meta-
bolic breakdown {(Noyes et al, 2011; Stapleton ef ai, 2004) to
yield lower MW congeners. BDE-209 is now the dominant PBDE
measured in abiotic compartments, typically at ppb to low ppm
levels in dust {Stapleton et al, 20121}, soils and sediments
{Marvin et al,, 2013), and biosolids (Peng et ol,, 2009). Human body
burdens of BDE-209 also appear to be on the 1ise in some popula-
tions, notably among E-waste workers (Bi et al, 2007, He et dl,
2013) and in the general population, particularly young children
in United States (Lunder et al,, 2010; Stapleton et al., 2012a).
Restrictions on the use of PBDEs have resulted in the in-
creased use of alternate flame retardants, notably organophos-
phate flame retardants (OPFRs; Table 2). The OPFRs have been
used for many years with a diversity of applications that may
extend beyond their use as flame retardants, including as plas-
ticizers and lubricants in industrial, commercial, and consumer
products. Likewise, they can also be used in a range of polymers
depending on the types of side chains present. For example,
nonhalogenated OPFRs, such as triphenyl phosphate (TPP) and
tricresyl phosphate (TCF) may be used as flame retardant plasti-
cizers in PVC, thermoplastics, and synthetic rubbers, with TPP
also being present in the flame retardant mixture Firemaster
550 (FM550), which is a replacement for PentaBDE that is added
to polyurethane foams. Similarly, the chlorinated OPFR tris
(1,3-dichloro-2-propyl} phosphate {TDCPP) is also an important
replacement for PentaBDE and is used in polyurethane foams in
residential furniture. Despite the increased and varied uses of
OPFRs, information on their exposure and environmental con-
tamination profiles is still imited. Much of the literature fo-
cuses on rising levels of OPFRs in abiotic environments
(Klosterhaus et af, 2012; Shoel et al, 2014} and indoor

]

environments, especially dust (Meeker et al, 2013; Stapleton
et al,, 2009; van den Eede et al, 2011). More recent stud
also begun to document increasing exposures and bioaccumu-
lation: of OPFRs in humans (Butt et al, 2014; Cooper et al, 20171,
Fromme et al., 2014; Kim et al, 2014) and wildlife {(Greaves and
Letcher, 2014; MeGoldrick et al., 2014; Sundivist et af., 2010).

One ongoing challenge with the production and use of flame
retardants is that many, including PBDEs and most OPFRs are
rporated into polymers until after polymerization and
so are not chemically bound but are rather mixed into parent
polymers. This additive practice presents exposure CONCerns as
these compounds may volatilize into the air and migrate into
surrounding environments, notably dust, with the breakdown
of the parent polymer. Another important issue with many
flame retardants currently used or considered as replacernent
options is that there is often little data available on their toxicity
potential prior to deployment into products. Thus, there is a
need to expand our understanding of the toxicity of flame retar-
hat are environmentally widespread and to better assess
the suitability of chemicals being used/considered as replace-
nts for those that have been banned or phased-out.
> zebrafish (Danio reri gly important bio-
logical sensor and model for screening chemicals for human
health hazard and disease {Padilla et al, 2012; Perkins et al,
2013; Truong ef al., 2014). They are small prolific spawners that
are easy to manipulate genetically and pharmacologically
(Granato et al, 1996, Howe et al,, 2013). Moreover, the zebrafish
and mammalian brain share many anatomical and functional
features, including well-conserved neuronal morphology and
neurotransmitter systems, although neuroanatomical differ-
ences exist between fishes and mammals (eg, comparatively
small telencephalon in fish that lack characteristic structures of
a cerebral cortex) (Kalueff et al, 2014; Panula et al, 2010). A num-
ber of neurobehavioral tests of locomotion, anxiety, and explo-
ration have been modeled in zebrafish, and increasing evidence
appears to support well-conserved responses resembling those
of rodents (Champagne et ai,, 2010; Panula et ai., 2006). For in-
stance, zebrafish display anxiety-like behaviors, such as dark
avoidance and thigmotaxis, when placed in novel test environ-
ments and these responses are consistent with observations in
rodents, thereby providing promising approaches for evaluating
chemical hazard In nonmammalian models (Champagne et al,,
2010; Levin et al, 3007; Steenbergen et ai., 2011). To this end, our
laboratory and cthers have designed high-throughput method-
ologies with embryonic zebrafish to rapidly screen chemicals
for neurological and developmental toxicity. These types of
platforms have greatly expanded our capacity to as-
sess large chemical libraries for teratogenicity, including for ex-
ample those under the U.S. EPA ToxCast program (Padiila et al,,
2012; Truong et al, 2014). They provide a systematic means of
testing large, structurally diverse classes of compounds
flame retardants. Importantly, these types of approaches repre-
sent an atiractive option for in vive screening early in R&D
processes to help identify promising chemistries that elicit re-
duced bicactivity and abandon others with unwanted side
effects.

The purpose of this study was to use this type of screening
platform with embryonic zebrafish to increase our understand-
ing of flame retardant bioactivity and toxicity potential. It had 2
major components: (1) evaluations of survival and 20 other tera-
togenicity endpoints in embryos at 24 and 120hpf; and charac-
terizations of locomotor behavior using 2 photomotor response
(PMR) assay tests at 24 and 120 hpf (Fig. 1). Each flame retardant
was tested across a range of nominal concentrations that
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TABLE 2. Structures of Targeted APE, CPE, and Dechlorane Plus Flame Retardants

Abbreviations Name/CAS no Structure

Abbreviations

Name/CAS no

Stracture

BDP Bispheno! Abis-
{dipheny! phos-

phate} [5945-33-5]

BPDP t-Butylphenyl
dipheny! phosphate

[56803-37-3]

TEHP

DPpP* Dipheny! phosphate

[838-85-7]

TPP

EHDP 2-Ethythexyl diphenyl
phosphate

[1241-94-7}

BCPCP*

IDDP Isodecy] diphenyi BICPPT
phosphate

[29761-21-5]

IFP-1
IPP-2
PP-3

Isopropylated tri- BCPF”
phenyl phosphate

[68937-41-7]

miTP Mono isopropylated
triaryl phosphate

{p-, m-, o- mixture}

RDP Resorcinol A bis- MCPP
{dipheny! phos-

phate) [57583-54-7]

TBP Tributyl phosphate

[126-73-8}

TBEP Tris {2-butoxyethyl

phosphate [78-51-3]

TCP Tricresyl phosphate O
-
{-, W1+, 0~ TixX) ]

[1330-78-5]

e TDCPP

Dechlorane

Tri-o-cresyl phosphate
[72-30-8]

Tris {2-ethythexyl)
phosphate [78-42-2

Triphenyl phosphate
[115-86-6]

Bis {2-chloropropyl)
1-carboxyathyl
phosphate

Bis(1,3-dichloro-2-pro-
pyliphosphate
[72236-72-7}

Bis (2-chloropropyl)
phosphate
[789440-10-4]

Dechloranes Plus
[13560-89-9]

sono (2-chloropropyl)
phosphate
[109827-89-6]

Tris {i-chloropropyl)
phosphate[13674-

Tris {2-chloroethyl)
phosphate
[115-96-8]

Tris {1,3-dichloro-2-
propyl phosphate
[13674-87-8]

CI\L

O
CE/\/ovg?vO\/“’%C]

i
CI\J\
0
Cl/jfo‘ﬁ'?’o\[’\cz
i O Ny

Metabolites are denoted with asterisks.
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FIG 1. Schernatic of A, morphological and B and C, behavioral t
phelogical developrnent at 24 and 120 hpf. Embryos were expos

sy

dants tested (Tables 1 and 2} included aryl phosphate ester
{APE} and chlorinated phosphate ester (CPE} OPFR chemicals

that are increasing in use with still insufficient toxicity testing.
A number of BFRs were also examinad, including the PBDEs and
heavily used flame retardants tetrabromobisphenoi-A {TBEPA)
and hexabromocyclododecane (HBCD; Table 1). TBBPA is the
most widely used BFR with early reports of increasing global
market demand ranging from 120000 to 170000 metric tons be-
tween 1999 and 2004 (Guerra et gl., 2011). It is a brominated ana-
log of BPA that is used primarily as a reactive flame retardant in
printed circuit boards and also as an additive flame retardant in
polymers. HBCD is an additive brominated cyclic alkane added
to polystyrene thermoplastic polymers in furniture, appliances,

h neurological and rnor-
rom 6 to 120 hpf under static nonrenewal conditions.

and construction materials. Although TBBPA has been used in
greater volumes than other BFRs, reported concentrations of
TBBPA in biota and the environment appear to be less than the
PBDEs (ECH, 2006, Kemnmilein ¢t al., 2009). However, the EU con-
cluded in its risk characterization of TBBPA that additional in-
formation and testing were needed with some guestions raised
due to its primary biodegradation to several products including
BPA. Components of the commercial mixture FM550, which
have been frequently detected in furniture foam since the 2005
phase-out of PentaBDE, were also studied (Dodson et al, 2012;
Stapleton et al., 201258} Although FMS50 is proprietary, studies
have identified its major components as TPP, Z-ethylhexyl-
tetrabromobenzoate {TBB), bis{2-ethylhexyl-tetrabromophthalate
(TBPH), and isopropylated triaryl phosphates {ITPs) {Stapleton
et al, 2008). Recent studies also report frequent detections
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of TDCPP in indoor environments and Its primary metabolite
bis{1,3-dichloroisopropyljphosphate (BDCPP) in human urine since
replacement of PentaBDE, and so both these chemicals were ex-
amined {Cooper ef al,, 2011, Meeker et al, 2013). In addition to test-
ing TDCPP and BDCPP, several other chilorinated-ivis flame
retardants and known metabolites were targeted.

MATERIALS AND METHODS

Chemicals. Table 3 provides a list of flame retardants tested along
with suppliers, stock purity, and concentration ranges evaluated.

Three different formulations of isopropylated triphenyl phosphate
{(IPP) were tested from different manufacturers as this chemical is
a complex mixture of numerous positional isomers and the phe-
nol groups may be mono-, di-, or tri-isopropylated. The toxicity of
the polychlorinated flame retardant Dechlorane Plus was also
characterized, and although not an organophosphate, it was
grouped with the CPEs because of shared chlorination. A number
of metabolites were also tested, including BDCFP (TDCPP
metabolite), bis{Z-chloropropyl)l-carboxyethyl phosphate (BCPCP;
tris  (Z-chloroethyl) phosphate [TCEP] metabolite), diphenyl
phosphate {(DPP; TPP metabolite), bis{Z-chloroisopropyliphos-
phate and mono(2-chloroisopropyliphosphate {(BCPP, MCPP; tris

TABLE 3. Sources, Purities, and Test Concentrations (N =32} of Targeted Flame Retardant Parents and Metabolites.

Flame retardant Supplisr Purity (%} Concentration ranges tested {ui}
APE FRs
BIP Toronto Research 28 6.4, 0.64, 0.064, 0.0064, 0.00064, C
BPDP Ubichem PLC NP 64, 6.4, 0.64, 0.064, 0.0064,
nep” Sigma-Aldrich 99 6.4, 0.64, 0.064, 0.0064, 0.00064, 0
LHDP TCl Arnericas 92.8 64, 6.4, 0.64, 0.064, 0.0064, 0
1DDP Ferro Corp NP 64, 6.4, 0.64, 0.064, 0.0064, 0
1PP-1 Areribrom NP 64, 6.4, 0.64,0.064,0.0064,0
1PP-2 Chemtura NP 64, 6.4, 0.64, 0.064, 0.0064, 0
1PP-3 Armfinecom Ing NP 64, 6.4, 0.64,0.064,0.0064,0
miTP Chemtura and Wellington > 90 6.4, 0.64, 0.064, 0.0064,0.00064
RDP Toronto Research 92 6.4, 0.64, 0.064, 0.0064, 0.00064, O
TBP Sigma-Aldrich a9 6.4, 0.64, 0.064, 0.0064, 0.00064, ¢
TBEP Chiron A5 95.5 6.4, 0.64, 0.064, 0.0064, 0.00064, ¢
TP Acros Organics as 64, 6.4, 0.64, 0.064,0.0064,
o-TCP Acros Organics 26.3 64, 6.4, 0.64, 0.064, 0.0064,C
TEHP Sigma-Aldrich 97 6.4, 0.64, 0.064, 0.0064, 0.00064, G
TFP Acros Organics 99.3 64, 6.4, 0.64, 0.064, 0.0064,C
CPE FRs and Dechlorane
BCPCP” MEI Global 96 64, 6.4, 0.64, 0.064, 0.0064, O
BDCPP* Toronto Research 95 64, 6.4, 0.64, 0.064, 0.0064,
MEI Global 99.5 64, 6.4, 0.64, 0.064, 0.0064, O
Toronto Research 98 6.4, 0.64, 0.064, 0.0064, 0.00064, C
MRI Global 95.1 64, 6.4, 0.64, 0.064, 0.0064, 0
Albernarie Corp NP 64, 6.4, 0.64, 0.064, 0.0064, 0
TCEP Sigma-Aldrich 98.8 64, 6.4, 0.64, 0.064, 0.0064, 0
TDCPP Sigma-Aldrich 99 64, 6.4, 0.64, 0.064, 0.0064, 0
PBDE FRs
DE-71 {PentaBDE commercial mix) Great Lakes Chem 98 64, 6.4, 0.64, 0.064,0.0064, 0
DE-79 {OctaBDE cornmercial mix} Great Lakes Chem 99 64, 6.4, 0.64, 0.064, 0.0064, 0
BDE-3 Sigma-Aldrich 986 64, 6.4, 0.64, 0.064, 0.0064, O
BDE-15 Sigma-Aldrich 99.6 64, 6.4, 0.64, 0.064, 0.0064, O
BIE-47 Cerilliant Corp 96 64, 6.4, 0.64, 0.064, 0.0064, ¢
BDE-99 Cerilliant Corp %6 64, 6.4, 0.64, 0.064, 0.0064, 0
BDE-10C AccuStandard 100 0.0064, 0.00064, 6.4E-05, 6.4E-06, ©
BDE-153 Cerilliant Corp 98 64, 6.4, 0.64, 0.064, 0.0064, C
BDE-154 AccuStandard 100 0.0064, 0.00064, 6.4E-05, 6.4E-06, ©
BDE-183 AccuStandard 100 0.0064, 0.00064, 6.4E-05, 6.4E-06,
Sigma-Aldrich 99.9 64, 6.4, 0.64, 0.064, 0.0064, O
AccuStandard 97.1 0.64, 0.064, 0.0064, 0.00064, 6.4E-05,0
AccuStandard 98 0.64, 0.064, 0.0064, 0.00064, 6.4£-05,0
AccuStandard 98 0.0064, 0.00064, 6.4E-05, 6.4E-06, 0
Sigma-Aldrich 99.8 6.4, 0.64, 0.064, 0.0064, 0.00064, 0
Other brominated FRs
HBCD {commercial substance) Sigma-Aldrich 95 6.4, 0.64,0.064, 0.0064, 0.00064, 0
Toronto Research 96 64, 6.4, 0.64,0.064,0.0064,0
Sigma-Aldrich 99.2 64, 6.4, 0.64, 0.064,0.0064, 0
T Americas 95 6.4, 064, 0.064, 0.0064, 0.00064, 0
Accustandard 3.7 (.64, 0.064, 0064, 0.00064, 6 4E-05, 0

Chemicals with asterisks are metabolites measured in toxicokinetic studies. NP, not provided.
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{1-chloropropyl) phosphate [TCPP| metabolites), and some of the

major hydroxylated PBDE metabolites (Burka et ai, 1994

Maimberg et al., 2005; Nomelr ¢t al,, 1981). The high MW PBDE dec—

abromodipheny! ether (BDE-209) was dissolved in acetone prior to

diluting in DMSO to prevent it from precipitating out of solution.

Standard stock solutions and covered dilution plates were stored
t —20°C. All solvents used were high-performance liguid chro-
atography grade.

Fish  husbandry., Wild-type zebrafish (Tropical 5D} were
maintained under a 14:10h light/dark photoperiod at the
Sinnhuber Aquatic Research Laboratory {SARL), Oregon State
University (Corvallis, Oregon) at densities of approximately
500 fish/5C gal tank in recirculating filtered water {carbon, reverse
maintained at 28°C and supplemented with salts
{Instant Ocean). Spawning funnels were placed in tanks the eve-
ning prior to chemical exposures, and the next morning after
~DaW'1"1s:; embryos were collected, staged, and maintained in
incubation dishes under the same conditions as adults
(gmmmel et al, 1995). Aduit care and breeding were conducted in
accordance thb protocols under Oregon State University's
Institutional Animal Care and Use Comimnittee.

Chemical exposures. At & hpf, embryos were enzymatically
dechorionated wusing pronase (90pl at 25.3U/ul; Roche,
Indianapolis, Indiana) and an automated mechanical dechorio-
nator developed at SARL {Mandrell et al., 2012}, Dechorionation
procedures followed those outlined in Mandrell et al. {2012}

echorionated ernbryos {1 embryo/well} were placed in poly-
styrene 96-well plates {BD Falcon, Corning, Lowell
Massachusetts) containing 90pl of E2 embryo media using
SARL’s automated embryc placement system. Embryos were
iy inspected under a light microscope after dechoriona-
tion and robotic plating to ensure embryo viability and proper
staging. For chemical exposures, 2 dilution plates were made
per chemical. Plate 1 contained serially d d chemical in
100% DMSQO. Piate 2 was prepared from Plate 1 and contained
chemical in E2 embryo media at 10-fold higher concentrations
{eg, 0-640uM at 6.4% DMSO) than the final concentration. Ten
microliters of this second dilution plate was spiked into two
S0ul  exposure plates containing embryos {eg, final
concentration = 0-64pM at 0.64% DMSO; n=32). Embryos were
exposed continuously to flame retardants from 6 to 120 hpf. For
some of the flame retardants, low agueous solubility or limita-
tions in stock concentrations available required that the con-
centration range to be shifted downward.

vigii

Developmental malformation evaluations. At 24 hpf, embryos were
evaluated for survival, delays in developmental progression,
notochord deformities, and altered spontaneocus movements.
Embryos that did not move {no body flexions ctions)
after 60s were scored as having altered spontaneous move-
ments. At 120hpf, larvae were evaluated for survival (MORT)
and 17 developmental malformations, inciuding yolk sac edema
(YSE} and pericardial edema (PE); body axis {AXIS), trunk length
(TRUN}, caudal fin {CFIN), pectoral fin (PFIN), pigmentation
(PIG), and somite (SOMI} deformities; eve (EYE), snout {(SNCOU},
jaw JAW), and otolith (OTIC) malformations; gross brain devel-
opment {(BRAIN}; notochord (NC) and circulatory (CIRC) deform-
ities; swirn bladder presence and inflation SWIM); and touch-
responses {TR}. For the TR endpoint, larvae were touched with a
probe on the head, body, and tail to test for normal rapid swim-
ming and touch-escape responses. Fish that did not move were
scored as having impaired TRs even if they showed no other

overt maiformations. Binary responses were recorded as either
absent {0} or present {1} for each endpoint. Data collection was
undertaken using a custom barcoding and tracking system
{Zebrafish Acquisition and Analysis Program] to facilitate reli-
able management of the large amounts of data collected.
Statistical analyses were performed using R code with testing
methodologies used by Truong et al. {(2014) to evaluate develop-

mental toxicity of chemicals under the TozCast program
{(RCoreTearn, 2014; Truong et al, 2014). Briefly, a binomial test
was performed that calculated lowest effect levels (LELs) for
each endpoint to identify incidences that exceeded a significant
threshold above controls. This test was preferable to a logistic
regression as it accounted for the observed nonmonotonicity of
flame retardant toxici

Embrycnic PMRs. PMRs in 24 hpf embryonic zebrafish exposed to
flarne retardants were measured using a custorn built PMR
assay tool (PRAT). Starting at approximately 17-19hpf, embry-
onic zebrafish begin to spontaneocusly contract thei
reflexive manner with advancing development of sensory-
motor neuron interactions and muscle enervations (Kimmel
et al, 199%; Kokel and Peterson, 2011; Kokel et af, 2010). This
response in embryonic zebrafish has been shown to be highly
sensitive to light through nonocular photoreceptors located in
the hindbrain (Kokel et al,, 2813). The PRAT platform uses PMR
ight from 2 white L300 Linear Lights (Smart Vision Lights,
Muskegon, Michigan) and a high resolution Frosilica GX3300
camera {Allied Vision, Stradtroda, Germany) that is mounted
under a 96-well plate holder and coupled to a near-infrared fil-
ter to remove image and light distortions. The light cycle con-
sists of following: 30s period of darkness Background); pulse of
ght {Exzcitation 1}; 9s of darkness; second Hght pulse
{Excitation 2}; and 10s of darkness {(Refractory). Within approxi-
mately 2s of the initial pulse of light, embryonic fish will
undergo vigorous, high frequency body flexions and tail oscill
tions. Embryos fail to respond to the second PMR light pulse as
basal responses of the neuronal circultry are nonresponsive or
suppressed. Digital video recordings of 17 frames per sec cap-
tured 850 frames through the light cycle.

Video analyses were conducted using a custom Matlab pro-
gram {Mathworks, Natick, Massachusetts) that calculated an
index of movement based on pixel differences across each video
frame starnp. The Matlab output was further processed and ana-
lyzed wusing custom scripts developed In R language
{RCoreTeam, 20714). Specifically, overall patterns of activity
within each cycle interval {ie, baseline, excitation, refractory}
were compared with those in vehicle controls by {1} estimating
the 50% peak difference from controls in either direction and (2}
performing a Kolmogorov-Smirnov test that compared the
empirical cumulative distribution function between chemical
treatments and controls. A Bonferroni-corrected p-value thresh-
old of .01 {0.05/5 treatments = .01} was used to determine stati
cal significance. Embryos that were dead or malformed at 24hpf,
inciuding those with altered spontanesus movements, were not
included. Sample sizes after the removal of dead and malformed
animals are provided in the Supplemeantary mat

ails in a

i

Larvae PMR. To further evaluate flame retardant effects on neu-
rological and locomotor behavior 120 hpf were sub-
using a ViewPoint

}ecL

Suences, Lyon, rraﬂcej. Zebmf.sn } vy consistent pat-
terns of visual locomotor activity upon alterations between
periods of light and dark (Froran et al., 2008; Irons et ai.,, 2010;
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24

Kimmel et al,, 1974). When i iz applied, larvae slow or stop
moving, and when light is removed a pronounced increase in
locomotion occurs that gradually subsides as darkness contin-
ues. These visual motor response behaviors may be evolution-
ary-linked adaptive responses to catch prey and avoid
predation. For example, evidence suggests that the increased
locomnotor hyperactivity in response to darkness may be a tract-
able measure of anxiety {dark avoidance behavior) in zebrafish
with decreased activity to continuing darkness proposed to rep-
resent habituation (Ali et al, 2011, MacPhail et al, 2009; Rihel
et al., 2010, Steenbergen et al, 2011}

T t of treatrnent and control larvae was tracked
using automated video recordings with a Zebrabox equipped
with a 96-well plate holder, internal LED lights for light record-
ings, and mounted camera. The light-dark cycling consisted of
the following: 5-min light acclimation; S-min dark stimulation;
5-min dark acclimation; S5-min light acclimation. The assay was
conducted in the momming of day 5 to help protect against tem-
poral variations. The software tracked short and large distance
movements {mm) of larvae every 40ms and integrated these
data in 60s intervals over the 25-min assay. These integrated
data were then further compiled and arza’iyzed using custom R
scripts to exclude both dead and maiformed larvae, determine
total movement {inmy; short+ large distances) of fish over time,
and guantify statistical differences in total motion between
treatments and controls (RCoreTeam, 2014). Sample sizes after
the removal of dead and malformed animals ave provided in the
Supplernentary material. As larval activity did not meet para-
ric assumptions of normality, Kruskal-Wallis analyses of
variance and Dunn’s multiple comparison post tests were used
to compare median locomotor activity per minute in treatment
versus controls in each of the 5-min light/dark phases.
Integrated locomotion measured at each minute was retained
as an independent observation to account for the large variation
in fish-to-fish movement that is still not well understood in the
presence of light/dark stimuli with the PMR assay. Statistical
significance was defined atp < .05.

12 movemer

e

Heatmap/hierarchical clustering. A heatmap of flame retardant
bicactivity was rendered using the ggplot2 plotting package for R
based on chemical groupings and LELs (Wickham, 2009). LELs
were considered optimal for use in this situation because they
represented shared values among sach of the 3 bicassays and
the lowest concentration that elicited a significant effect above
background. The chemical groupings were organized based on
their dominant structural features. Hence, for example, dechlor-
ane while not an organcphosphate was including in the CPE
group because it is alsc a polychlorinated flame retardant.
Likewise, non-PBDE BFRs were grouped together even though

they have other Important structural attributes that could be
influencing bioactivity. Hierarchical clustering analyses were
cor‘ducted using a custom R script {RCor eTenm 2014). In brief,

es were computed

issimi

Eucli based ity m
for each chemical group, and the result.kxg ma
tered using a complet@linkage agglomerative clustering algo-
rithm {("bottom up” approach). With this method, objects were
assigned initially to their own clusters with the algorithm pro-
ceeding iteratively to join similar clusters until there was just 1
gle cluster for each grouping.

trices were clus-

siny
Principal component analysis. The R language was implemented
with ggplot2 to construct a principal components analysis (PCA}
using a covariance matrix as a dimension reduction tool to find
principal components and characterize relationships between

individual flame retardants, structures, and toxicity endpoints
measured as LELs (RCoreTeam, 2014; Wickham, 2009).
Bootstrapped k-means clustering algorithms (1000 simulations)
were applied to the PCA to find clustering with the highest
Jaccard similarity coefficients (cluster 1=0.708; cluster 2=0.714;
cluster 3=0.669, cluster 4-=0.694, clusiter 5=0835; cluster
6=0.613; cluster 7=0.770). Jaccard values that are>075 are
considered stable clusters, whereas those > 0.60 suggest cluster-
s, Ellipses drawn for each cluster represent the 95%
e interval of each cluster center. Flame retardants ave
identified individually and are colored to denote their chemical

class.

RESULTS

Developmental Malformations

Table 4 provides a summary of mortality and developmental
malformations observed in 24 and 120hpf fish exposed to
flame retardants. Detailed results for all compounds can be
found in the Supplementary material. Of the 44 chemicals tar-
geted, 31 caused significant mortality and morbidity while sev-
eral elicited no effects, including: DPP, dechlorane, BCPCP,
TCPP, MCPP, BDE-3, BDE-183, BDE-209, DE-79 {OctaBDE mix-
ture), 3-0OH-BDE-47, TBB, TBPH, and TBBEPA-DBPE. In contrast,
TBBPA caused the great test array of teratogenic effects at both
24 and 120hpf, and miTP was an equally potent toxicant at
120 hpt that also caused multiple defects but was inactive at
24 hpf (Fig. 2). The PBDE congener BDE-100 was one of the more
potent flame retardants examined with delayed embryonic
development at 6.4E-06 pM exposures that led to high mortality
by 120 hpt.

Embryonic PMRs at 24 hpf
Flame retardant effects on PMRs of embryos at 24 hpf are sum-
marized in Table 5 d"ld are depicted as significant hyperactive
{1) or hypoactive (}) body and tail contractions rel
trols. Detalled PRAT results for each flarmne retardant are also
provided in the Supplementary material. Data are only shown
for the initial baseline phase {darkness} and first excitation
phase {rapid pulse of light} as these are the only phases in
which altered activity was observed in this study. This low base-
line activity in the second excitation and refractory intervals
helps to further validate the assay as basal activity has been
shown to be suppressed in embryos after an initial pulse of
light. Compared to controls, 12/16 {75%) of the APE-based flame
retardants significantly altered locomotor behavior at 24hpf
ith the dominant response being hypoactivity. Significantly
reduced PMRs were also measured among fish exposed to some
concentrations of the CPE-based chemicals, including TDCPP,
BOCPP, and TCPP. Both bisphenol A bis-(diphenyl phosphate)
{BDP) and TCEP were the only OPFRs tested that caused a hyper-
active response. For the brominated compounds, hypoactive
responses also dominated with DE-71 (PentaBDE mixture), BDE-
15, BDE-99, BDE-153, and BDE-154, as well ags HBCD and TBPH,
causing reduced activity compared to controls, whereas BDE-3,
BDE-100, and TBBPA exposures resulted in significant hyperac-
tivity. Embryos at the highest concentrations tested (64uM)
were also unable to acclimate normally to baseline condi
of darkness, including those exposed to the APE based TCP, o-
TCP, and TPP as well as the PBDE congener BDE-153. Embryos
exposed to BDP at the lowest concentration tested {0.00064 1M}
were hyperactive during the baseline dark acclimation relative
to controls.

e to con-

tions
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TABLE 4. LELs Measured in Embryonic Zebrafish Exposed to Flame Retardant Chemicals

24 hpf embryos {LEL; pM)

120 hpf larvae {LEL; pM}

Mot Dy Mort YSE AX £ S J PE Pr CF T SB TR
- - 0.064 - - - - - - - - - -
- 64 0.064 64 64 64 b4 64 64 64 64 - - -
- - 64 - 64 - - 64 - - - -
64 64 0.064 - - - - - - - - - - -
64 64 64 64 64 64 64 - - 64
0.0064 64 64 64 - - - - 64
64 0.064 64 64 - - 64 64 64 -
- - - 0.64 064 - 064 064 064 064 - - 0.64 (.64
- - 0.64 - - - - - - - - - - -
- - 6.4 6.4E-04 - - - - - - - - - -
- - 6.4E-04 - - - - - 0.0064 - - - - -
0.0064 64 0.0064 654 64 - - - 654 - - - - 64
N 64 . . N N N . . . -
6.4
0.64 - 0.0064 64
- - 0.0064 - - - - - - - - - - -
&4 64 &4 - - - - - - - 64 - - -
BCPP* - - - - - - - - - - 0.064 - - -
BDCPP* 0.0064 0.0064 0.0064 - - - - - - - - - - -
PBDE FRs
BDE-15 - - - - &4 - - - - - - - - -
BDE-47 0.064 0.0064 64
BDE-99 6.4 0.064
BDE-100 6.40E-06 6.40E-06
BI3E-153 - - 0.0064 - - - - - - - - - - -
BI3E-154 - - 0.0064 - - - - - - - - - - -
DE-71 0.064 - 0.064 - 64 - - - - - - - - -
2,4,6-TBP* - - 6.40E-04 - - - - - 0.0064 - - - - -
5-0H-BDE-47" - - - - - - - - - - 640E-04 - - -
6-0OH-BDE-47" - - - - - - - - 0.0064 - - - - -
Other brorninated FRs
HBCD 6.4
TEBBPA 64 6.4 6.4 6.4 - 6.4 064 - - 6.4 64 - 6.4

Only flame retardants with adverse effects are reported. Raw data for all the flame retardants are provided in the Supplemer

itary material.

Mozrt, mortality; DP, delayed progression; Ax, axis; E, eves; 5, snout; §, jaw, P, pectoral fin; CF, caudal fin; T, trunk; 5B, swin: bladder. "Metabolites.

Larval PMRs at 120 hpf

Table & summarizes flame retardant effects on larval zebrafish
photornotor behavior at 120hpf as significant hyperactive {1} or
hypoactive {{} movement based on integrated locomotor activity
in each of the light/dark phases relative to controls. Additional
time series and boxplot data for individual chemicals are provided
in the Supplementary material. For the OPFRs, compared to con-
trols, exposure to BDP, t-butyiphenyl diphenyl phosphate (BFDP),
IPP, miTP, resorcinol A bis-{diphenyl phosphate) (RDP), wis (2-
butoxyethyl} phosphate {TBEP), TPP, TCEP, TCPP, and TDCPP, as
well as sorne metabolites (BCPP, BDCPP, and MCPP), caused signif-
icant hypoactivity under dark stimulation. This hypoactivity

3

extended into the dark acclimnation phase for IPP, RDP, TBP, TPP,
BCPP, TCEP, TCPP, and TDCPP. In contrast, hyperactive responses
tartle phase {TCP,

were measured for several OPFRs in the dark
tris (2-ethylhexyl} phosphate [TEHP], and dec
acclimation phase (BPDP, Z-ethylh: diphenyl phosphate
[EHDF], TEHP, and BCPCP). TDCFP, BCPCP, TCP, IPP, and BPDP also
elicited potent hyperactivity compared with controls during the
initial or both light acclimations. Fish were less sensitive to the
polychlorinated Dechiorane Plus compound than the CPE-based

flame retardants. The PentaBDE commmercial mixture DE-71 and
PBDE metabolites 6-OH-BDE-47 and 5-OH-BDE-47 caused signifi-
cant hvperactivity in larvae subjected to dark stimulation, which
for DE-71 and 5-0OH-BDE-47 was preceded by hyperactivity in both
the initial light and dark acclimation phases. For the other FBDE
congeners as well as the PEDE metabolites 3-OH-BDE-47 and 2,4,6-
TEP, depressed locomaotor activity was detected In the dark startie
phase as well as in some cases during light and dark acclimations
(3-0H-BDE-47, BDE-47, BDE-99, BDE-100, BDE-154, and BDE-209). In
addition, compared to controls, TBEPA caused significant reduc-
tions in movermnent during both the dark stimulatory and acclima-
tion phases. Fish that had been exposed to TBB and TBPH were
unable to acclimate o light. This inability to acclimate was also
observed In the dark acclimation phase among fish exposed to
TBPH and HBCD. No significant effects on behavior were observed
in larvae exposed to BDE-153, BDE-183, DE-79, or TEBPA-DBPE.

DISCUSSION

The vast majority of flame retardants and metabolites tested in
this study were bioactive with most (93%; 41/44) causing
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FIG 2. Morphological deformities observed in zebrafish larvae ex

denoted as: Ax, axis; S, snout; §, jaw; PE, pericardial edema; YSE, yolk sac edema.

disrupted development in one or more of the 3 bioassays and
across one or more concentrations tested {Fig. 3). These findings
are noteworthy because the health consequences of exposures
to many of these compounds, particularly the APE- and CPE-
based chemicals, are poorly understood. The APE-based constit-
uent of FM550 mIT? and the brominated-BPA derivative TBBPA
elicited the greatest number and variety of developmental mal-
formations, including YSEs, PEs, impaired TRs, and deformities
of the trunk, body axis, snout, jaw, caudal fin, and pectoral fins.
These results are consistent with studies in rodent models and
other research showing that a central mechanism of TBBPA
and HBCD developmental toxicity may proceed through dis-
ruption of thyroid homeostasis (Eviksson et al., 2006; Kitamura
et al., 2002; Mariussen and Fonnum, 2003}. The importance of
thyroid hormone in brain and somatic development is wel
established, and small changes in maternal or fetal thyroid
hormone can cause severe deformities, motor skill deficien-
cies, and cognitive impairments (Haddow et al, 1998). In con-
trast to TBBPA, TBBPA-DBPE was inactive in all 3 bicassays.
Additional toxicokinetic studies would be useful to understand
TBEBPA-DBPE metabolic and elimination profiles as little is
known about the toxicity of this chemical. In addition, no
effects were measured among embryos exposed to the
OctaB re DE-79 and one of its major components BDE-
183, However, the other PBDE parent and metabolites tested
were bipactive in one or more of the bioassays with BDE-100
being one of the most potent toxicants tested. The potential
for PBDE-induced neurodevelopmental toxicity and thyroid
dysfunction are important toxicological endpoints of concermn
and the data findings here echo these concerns. A number of
reviews have been written that describe PBDE-induced
developmental toxicity and current knowledge of their

DE mi

ad to miTF fiame retardant at 0, 0.00064, 0.0064, 0.064, (.64, and 64ud for 5 d

Lontrol

. Defornt

mechanisms of action {Costa ef al., 2014; Noyes and Stapleton,
2014; Staskal and Birnbaum, 2011).

Aryl and Chiovinated Phosphate Esters

All the APE- and CPE-based flame retardants altered 120hpf
larval locormnotor behavior at one or more of the concentrations
and light/dark epochs examined (Table 6}, whereas 75% of the
APEs impaired spontaneous motor functioning of embryos at
24hpf (Table 5). The dominant 24hpf PRAT response in
APE-exposed embryos was hypoactivity that was also detected
at baseline for some of these formulations {({PP-2, IPP-3, TCP,
o-TCP, and TPP}, suggesting that early development prior to
24 hpf may be an important period of heightened susceptibility
to this class of flame retardants. The CPEs, in some contrast,
were less bioactive at 24hpf than the APEs, but all impaired
behavior by 120 hpf suggesting potentially important target win-
dows for the CPEs after embryonic gastrulation and segmenta-
tion. An exception to this finding for the CPEs related to TDCPP
and its major metabolite BDCPP, both of which impaired devel-

opment and depressed movement in 24 hpf embryos. Indeed,
this is the first toxicity testing with BDCPP and results here sug-
gest metabolic bicactivation. BDCPP was a substantially more
potent teratogen by 4 orders of magnitude (LELs==0.0064 M)
than TDCPP (LEL=64pM), causing reduced survival and
impaired development at 24hpf that led to high mortality by
120 hpf. Morecover, emnbryonic spontanesus movement at 24hpf
was also significantly depressed among 0.0064 pM concentre
tion groups, suggesting that BDCPP could be an important driver
of TDCPP developmental toxicity observed here and in other
studies (Dishaw et al.,, 2011; Fu et al,, 2015; Mo et al., 2012). By
120hpf, both TDCPP and BDCPP elicited similar depressed loco-
motor phenotypes in fish under dark stimulation, although
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TABLE 5. Hyperactivity {1} and Hypoactivity {|) Measured as LELs in 24 hpf Zebrafish Exposed to Flame Retardants

Raseline

Excitation 1

Cone (M)

640E-06 640E-05 ©40E-04 0.0064 0064 064 64 64 640E-06 640E-05 640E-04 0.0064 0064 064 64 64

APETRS
BDP
BPDP
EHDP
IDDP
IPP-1
IPP-2
IPP-3
miITP
RDP
TBP
TBEP
TCP
0-TCP
TEHP
PP
DPP*
CPETFRS
BCPCP*
BCPP*
BDCPP*
Dechlorane
MCPP*
TCEP
TCPP
TDCPP
PEDEFRs
DE-71
DE-79
BDE-3
BDE-15
BDE-47
BDE-99
BDE-100 -
BDE-153
BDE-154 -
BDE-183 -
BDE-209
2,4,6-TRP*
3-OH-BDE-47*
5-OH-BDE-47*
6-OH-BDE-47* -
Other brominated FRs
HBCD
TBB
TBBPA
TBBPA-DEPE
TBPH

Dashes (-} ix
Asterisks (") denote

maladaptation in TDCPP-exposed fish was measured across all
4 light/dark epochs. This difference may be partly attributable
to the higher mortality and teratogenicity observed among fish
exposed to BDCFP.

The AFE-based miITP component of FM550, which has been
an important replacement for PentaBDE, was also highly bioac-
tive with results that are consistent with recent studies showing
PE and heart malformations {Gerlach et al., 2014; McGee et al,

2013} In this study, no effects were observed in 24 hpf zebrafish
exposed to mITP, whereas by 120 hpf, low concentration miTP-
exposed larvae presented with multiple morphological and

behavioral abrnormaliti

s, suggesting that its impacts on neuro-
development may extend across multiple early life stages with
important targets later in development that have yet to be fully
described. As for effects of other major components of FM550,
TPP also reduced survival with high concentration edemas, and
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Mortality and Teratogenicity

24 hpt PRAT

120 hpt PMR

Hyper

28 haf

130 bipf

Hypo-
itivity

Hygper

Hypo-

- Mortality

- Notochord

L. Touch-Response

Delayed prog.
Spont. movemant

Mortality

Yolk Sac Edema
Axis

Eyes

Snout

Jaw

Otolith
Pericardial ederma
Brain

Somites
Pectoral Fin
Caudal Fin—
Pigmentation =
Circulation —
Trunk oo

Swim Bladder
Notochord

— Baseline —f
Excitation 1
Excitation 2
e Refractory —

Baseling —
Excitation 1
Excitation 2

Refractory —

Light 1~
Dark Stimulation
Dark Acclimation -
bee Light 2 —
— Light 1 =
Dark Stimulation —
Dark Acclimation —
L Light 2 —

ThCep
DE-71—
BDE-3 —
DE-79 —
TBBPA —
788 —|
TBPH —
HBCD —

Cone {uh)

Aryl Phosphate Esters

FIG 3. Heatmap and hierarchical clustering of morphol

square represents the LEL with response profiles hierarchically clustered to Hnk flame retardant structures to bivactivity within

caused hypoactive locomotor responses at both 24 and 120hpf,
whereas TBB and TBPH caused no significant morphological
defects {Tables 4-6, Fig 3, and Supplementary material)
However, compared to controls 120hpf larvae exposed to TBB
and TBPH were unable 1o acclimate to either light or dark stim-
uli, and this inability to acclimate was observed earlier in 24 hpf
embryos exposed to TBPH. Results here with TPP contrast older
screens in adult rodents that generally indicated a lack of neu-
rotoxicity {(Sobotka et al, 1986). However, this is one of only a
couple developmental neurotoxicity examinations of TPP
{(McGee et gl., 2013) ¢ ta suggest that younger animals may
be more susceptible to this chemical thereby warranting further
study.

Dachlorane —

BDCPP—

BDE-100—

BDE-47 —
2,8,6-TBP

BDE~-15—

BDE-153—

BDE-99—
BDE-154

BDE-209 —

5-0H-BDE-47 —
6-OH-BDE-47 —

BDE-183 —

TEBPA-DBPE ~

Chiorinated Pﬁasphate Esters PROE Fis

- 3-OH-BDE-47

=

00587

Other Brominated FRs

ical and behavioral responses of zebrafish embryos exposed to halogenated and APE flame retardants. Each

chemical groupings.

Common Responses/Mechanisms of Bioactivity
One of the ongoing b nges with characterizing toxicity
3 from larger chemical data sets such as this flame retard-
ant grouping relates to effectively visualizing and dissecting
potentially related responses and common toxicity mecha-
nisms among a high-dimensional, complex set of morphologi-
cal and behavioral phenotypes. For this study, 2 approaches
were adopted to examine relationships of bioactivity within and
across individual chemical classes. The first approach (Fig 3}
used a heatmap and hierarchical cluster analysis to evaluate
interactions and differences in bicactivity within chemical
groupings based on LELs. The second approach used a PCA test
as a dimension reduction tool to further address whether and
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how compounds clustered based on their structures, teratoge-
nicity, and neurcbehavioral activity. Figure 4 shows a 2-dimen-
sional PCA of the first 2 principal components. Loadings for
each component are provided in the Supplemnentary material.
While all the APE-based chemnicals tested had effects on
development, those APEs with isopropyl (ie, mITP, IFF}, butyl
(BPDP), and cresyl {TCP) substituents on phenyl rings clustered
tightly and were particularly potent across the 3 bioassays
{Fig. 3). This clustering paftern suggests that these types of
structural moieties and substitution patierns on phenyl may
enhance the overall biological reactivity of this chemical class.
As for the CPEs, TDCPP and BDCPP clustered tightly and may be
indicative of the greater chlorination of TDCPP and BDCPP as
well as hydroxylation of BDCPP that could be influencing their
 target window at 24hpf. The other chlori-
nated-tris compounds characterized, TCPP and TCEP, also clus-
tered, with the TCPP metabolites BCPP and MCPP clustering
with TCPP suggesting similar reactive features. In contrast,
TCEP and its metabolite BCPCP did not cluster tightly, as BCPCP
elicited potent hyperactivity in both the light and dark acclima-
tion phases of the larval PMR assay, whereas TCEP was bioactive
across several endpoints. PBDE clustering appeared to be based
on patterns of bromination with congeners having between 2
and 6 bromines generally demonstrating the greatest bioactiv-
ity. BDE-100 and BDE-47 clustered tightly based on compara-
tively potent teratogenicity and hypoactivity in the larval PMR
assay regardless of whether light or dark stimulation was
applied. These compounds are structurally identical except that
BDE-100 contains an additional ortho-subst d bromine
atom on diphenyl ether. Indeed, a number of parent PBDEs
(BDE-47, -15, ~153, -89, -154, -209) and metabolites {2,4,6-TBE, 3-
OH-BDE-47) clustered due to hypoactivity in one or both PMR
assays and slevated mortality/morbidity. In contrast, PentaBDE

hioactivity and ear.

e

i

(DE-71), which is composed of some of these parent PBDEs
(BDE-47, -99, -153, -154), elicited a hyperactive response suggest-
ing that zebrafish are highly sensitive to other components of
DE-71.

Results of the 2-dimensional PCA (Fig. 4} and k-means
derived clusters support that flame retardant bioactivity was
not driven by major structural groupings, which was somewhat
expecied as nearly all {41/44) of the flame retardants and metab-
olites tested were deleterious in one or more of the bioassays

across multiple endpoints and concentrations. Nonetheless, it
is possible from the pattern of clustering in the PCA to discemn
groupings with levels of reduced and enhanced activity. Cluster
5 is notable because it includes several compounds, all bromi-
nated except for dechlorane, that produced little to no effect.
The exception to this group 5 clustering was the PBDE metabo-
lites 5-OH-BIDE-47 and 6-OH-BDE-47 that caused low concenira-
tion hyperactivity in the 120hpf PMR assay along with low
concentration caudal fin and PEs, respectively, but elicited no
effects in the 24 hpf-PRAT assay. These metabolites appeared to
group with this cluster of comparatively inactive compounds
because the 120 hpf{-PMR data did not contribute substantially
to the principal components, whereas the PRAT data were
important to the loadings (see Supplementary material for PCA
loadings).

At the other extreme, cluster 4, which is widely separated
from cluster 5, contained only mITP and TBBPA as th
the most developmentally toxic flame retardants measured in
this study. Clusters 3, 6, and 7 were notable because they con-
tained generally the next most highly bioactive flame retard-
ants after cluster 4. PentaBDE (DE-71} and all of its major
components {BDE-47, -99, -100, -153, and -154} clustered in one
of these 3 groupings along with one of its major hydroxy metab-
olites 2,4,6-TBP. This is concerning as these congeners continue

ese were
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FIG 4. Two-dimensional PCA and covarlance matrix identifying regional clustering patterns arnong flame retardants based on their developmental and behavio

PCL (21%)

icity measured as LELs in 24 and 120 hpf zebrafish exposed to chemical from 6 to 120 hpfl
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to be highly detected PBDEs in humans and the environment
{Tormns et al, 2011}, It is also notable that TPP, which along with
miTP are major components of the PentaBDE replacement
FMS550, also clustered in group 3 along with the 3 bioactive IPP
formulations, RDP, and BPDP. This is contrasted by the other
major constituents of FM55C, TBB and TBPH, i:ha* clustered with
other less bioactive flame retardants in group 5. As for the CPEs
and their metabolites, both TDCPP and its metabolite BRDCPP
clustered in group & further supporting the potential impor-
tance of BDCPP in the toxicity of TDCFP. Simtlarly, BCFP
appeared 0 be a more potent bioactive metabolite than its
parent TCPP.

Concordance of Bioassay Results

There was generally a high degree of concordance among the 3
assays in that a *hit” or lack thereof in 1 assay was typically pre-
dictive of the presence and absence of effects in anocther assay
with some exceptions (Fig. 5). Both the 24 and 120hpf PMR
assays predicted the presence and absence of morphological
defects at 120 hpf for 93% (41/44) of flame retardants tested. The
exceptions to these interactions were for TCPP, 3-0H-BDE-47,
and BDE-3 that elicited effects in both behavioral assays but
were not morphologically sensitive. These results support the
use of these types of PMR assays as promising nonlethal means
to efficiently characterize developmental abnormalities in
young zebrafish. This attribute may be particularly meaningful
for future st s seeking to understand the long-term conse-
guences of exposures to these and other hazardous compounds
in older animals.

Another observation pertains to a comparison of potency
observed in the morphological and behavioral assays. Figure 3
shows that there were some chemicals that elicited significant
behavioral changes at lower concentrations than those concen-
trations reducing survival or causing other morphological
deformities. Conversely, there were also instances wher
vival and morphology were the most sensitive targets. These
differences in relative potencies across the different bioassays
could be meaningful to understanding windows of susceptibil-
ity and mechanisms of action but could also & ked to cond;
tions of the study design. Although the PMR assays were
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FIG 5. Venn diagram showing distibution and concordance of flame retardant

activity measured in 3 zebrafish bloassays used to characterize
uevelonm ental toxicity.

conducted in animals that appeared to be visually normal and
healthy with otherwise unaltered morphology or TRs, it is possi-
ble that some of these animals were e:{perien systemic tox-
icity or other unobservable deformities {eg, musculoskeletal
impairments) that were not readily discernable with the mor-
phological evaluation. This could have skewed the behavioral
assays to identify positive hits if animals were experiencing sys-
temic toxicity that was not detected during the morphological
evaluations. It is also possible that our testing conferred some

“survivor” bias. That is, for compounds and test concentrations
that caused death, it is possible that there could be a subsample
of animals being tested in the PMR assays that were more resi
ant to the chemical and so effects on behavior might not be
ohserved or could be reduced.

This is the first study to use the 24 hpf PRAT assay to evaluate
flame retardant effects at initial stages of the developing zebra-
fish nervous system. There were several examples of com-
pounds (BDP, EHDP, TEHP TDCPP, ED’? 100, DE-7%, TBBPA, and
HBCD) whereby directionally opp behavioral responses
were measured at 24 and 120hpf For instance, the APE-based
flamne retardant BDP caused low concentration mortality at
120hpf in concert with increased and decreased locomotor
responses at 24 and 120hpf, respectively. There were also sev-
eral instances where chemical sensitivities were detected in the
120hpf PMR assay but not in the 24 hpf PRAT assay {mITP, TBEP,
TEP, DPP, BCPP, MCPP, BCPCP, dechlorane, BDE-47, DE-71, 5-CH-
BDE-47, 6-OH-BDE-47, TBB, TBPH), and vice-a-versa (BDE-153).
These opposing responses are notable because they could reveal
important differences in targets and mechanisms for these com-
pounds. Compelling evidence now supports that 24hpf PRAT
excitatory motor responses in zebrafish are linked to nonocular
PMR photoreceptors and distinct neurcnal pamways activated in
the caudal hindbrain—but not in the forebrain and midbrain—
that may involve opsin-based phototransduction pathways
{Kokel et al, 2013). Thus, PRAT can reveal important chemical
sensitivities at sorne of the earliest stages of anatomical and
functional patterning of the vertebrate nervous system.

While the underlying mechanisms driving larval PMR
responses to light and dark and other extrinsic/intrinsic stimuli
are still not well understood, it is readily evident that the central
and peripheral nervous systemn of zebrafish is much more com-
plex by 120hpf than at 24hpf. With this advancing develop-
ment, a variety of toxicity mechanisms could be operating that
t include chemical-induced changes in biochemical levels/
sity, electrical signaling, receptor-mediated functioning,
cell communications, and the responsiveness and plasti-

at-

cell

city of developing organ systems. Ancther important difference
that could be impacting the divectionality of behavioral results
is that the e*{po sure duration is longer in the 120hpf fish and so

s of uptake and toxicokinetics in older larvae
cit different patterns of toxicity and chemical sensitiv-
ities. Pairing these PMR assays together at 24 and 120hpf is
advantageous because we are able to derive a more complete
picture of flame retardant effects on early development that are
homologous to fundamental processes of development in
humans {Selderslaghs et al, 2013). For instance, mechanistic
data suggest that PBDE neurotoxicity may operate by several
pathways that include disrupted thyroid hormone signaling
{Tohazehiebo e al., 2011; Noyes et al., 2013}, altered cholinergic
neurotransmissions {Dufault et g, 200%; Johansson et al., 2008},
impaired neuronal 10L1fevat10n and plasticity {(Ibhazehiebo
et al., 2001%; ¥ing et al, 2009), and oxidative stress {Tagliaferri
et al,, 2010} Fur‘zhelmore, consistent with results here, a sub-
stantial number of human epidemiology studies and
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neurcdevelopmental toxicity studies in rodents and other mod-
els, which have been summarized in recent reviews (Costa et al.,
2014; Staskal and Birmbaum, 2011}, have shown that PBDEs can
elicit adverse neurobehavioral outcomes in early development.
Data generated here are consistent with and complement these
other studies in humans and laboratory models. However, while
PEDE biological disposition and toxicity are increasingly well-
described, our understanding of the underlying mechanisms of
toxicity for the other BFRs and OPFRs remains limited. Data gen-
erated here may be particularly helpful in future research.
Moreover, other classes of organophosphates, such as organo-
phosphate pesticides like chlorpyrifos, which have been shown
to interfere with neurodevelopment by cholinergic and non-
chlorinergic pathways, have been subjected to more testing
than the OFFRs and may provide helpful insights into future
testing that could complement data generated here and else-
where (Levin ef gl., 2004, Yang et al,, 2011}

CONCLUSIONS

Taken together, resuits of this study indicate that zebrafish neu-
rological and morphological development appears o be highly
sensitive to many of the flame retardants currently in use and
present in humans and wildlife, as well as many being consid-
ered and used as replacements. This finding takes on height-
ened Importance because these chemicals are not typically
detected in humans and the environment in isolation but are
present rather as complex mixtures. This type of high through-
put s ning methodology in zebrafish provides a meaningful
opportunity moving forward to design flame retardants that
impart reduced human health and environmental hazard
potential. Not only do these assays detect initiating events of
neurclogical impairments but also effects on gross morphologi-
cal development. These types of readouts allow for the anchor-
ing of developmental toxicity to morphological and behavioral
phenotypes that in turn can be used to understand toxicity
pathways for ultimate translation to humans. Future work will
i e using this in vivo testing platform in young zebrafish to
identify important mechanistic targets for these compounds
and developmental windows of susceptibility. Finally, this
research platform is well suit
effects of complex mixtures to discern differential or synergistic
developmental toxicity.

ed o examine the interactive
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Basis for inclusion and scientific impact:

An important organizing principle for EPA’s chemical safety for sustainability (CSS) strategic
research action plan is based on challenges that despite the essentiality of chemistry to modern life,
there continues to be a need for innovative, systematic, effective, and efficient approaches and tools to
inform decision-making to reduce human health and environmental impacts. This global problem as
well-articulated by the agency is what really led me to my fellowship in Dr. Tanguay’s laboratory. In
addition to my individual and collaborative research, | think an important job of a researcher in human
health and environmental toxicology involves positioning their work in a larger context. This paper
represents this type of effort to translate and synthesize a great deal of data and tools, including my
own, to help advance the field of toxicology. It represented an invited review by the journal Green
Chemistry to describe how innovations in the zebrafish model have positioned it as a rapidly advancing
model that can be employed to design safer chemicals.

As mentioned, Dr. Tanguay has been on the leading edge world-wide in designing in vivo high-
throughput screening (HTS) assays with zebrafish, and conducting and linking these HTS assays and data
outputs to other molecular testing (e.g., RNA sequencing, microarray) and neurobehavioral testing
platforms. | had the privilege of working with him on these efforts, and conducted a great deal of
research in his laboratory, and in collaboration, on all of these fronts to advance the design of methods
and tools to use zebrafish as high-throughput in vivo models to understand toxicity pathways and
enhance the design of more sustainable chemistries. This particular manuscript in Green Chemistry
describes the cutting edge high-throughput molecular screening, including those using RNA sequencing
and microarray technologies. It describes in greater detail the uses of fish embryos as HTS biosensors to
rapidly screen chemicals for bioactivity, including their tremendous application potential to R&D both
inside the government and in the private sector. The high-throughput behavioral assays being
developed provide a promising linkage of neurodevelopmental malformations to behavioral responses
that are increasingly important to understanding the human health impacts of chemical exposures.
Perhaps an even more important impact of this paper is a discussion of how these assays across
different platforms and levels of biological organization can be integrated to provide a fuller picture of
the molecular targets for chemical interaction and the downstream cascades of events that can
culminate in an adverse outcome.

| completed all aspects of this review, including developing the focus and outline, designing and
managing the literature survey and data review, drafting all sections, and deriving conclusions. | also
thought it was important to describe major limitations and uncertainties in zebrafish HTS assays, and
identify research and steps that need to be taken to further their advancement. | also responded to and
managed the peer review process.

ED_002435_00006144-00034



LHEMISTRY

Zebrafish as an in vivo model for sustainable
chemical design

CrossMark

& siiek ox ek

Cite this: DO 10.1039/c64gc02061e

Pamela D. Noyes, T Gloria R. Garcia and Robert L. Tanguay?*

Heightened public awareness about the many thousands of chernicals in use and present as persistent
contaminants in the environment has increased the demand for safer chemicals and more rigorous tox-
icity testing. There is a growing recognition that the use of traditional test models and empirical
nt

ries introduced each year. These realities coupled with the green chem-

approaches is impractical for screening for toxicity the many thousands of chericals in the environme

and the hundreds of new chemi
istry movermnent have prompted efforts to implement more predictive-based approaches to evaiuate
chernical toxicity early in product development. While used for many years in environmental toxicology
and biomedicine, zebrafish use has accelerated more recently in genetic toxicology, high throughput
screening (HTS), and behavioral testing. This review describes major advances in these testing methads
that have positioned the zebrafish as a highly applicable mode! in chemical safety evaluations and sustain-
able chemistry efforts. Many toxic responses have been shown to be shared among fish and mammals

owing to their generally well-conserved development, cellular networks, and organ systems. These

shared responses have been observed for chemicals that impair endocrine functioning, development, and
reproduction, as well as those that elicit cardiotoxicity and carcinogenicity, among other diseases. HTS
technologies with zebrafish enable screening large chemical libraries for bicactivity that provide opportu-
nities for testing early in product development. A compelling attribute of the zebrafish centers on being
able to characterize toxicity mechanisms across muitiple levels of biological organization from the
genome to receptor interactions and celiular processes teading to phenotypic changas such as develop-
mertal matformations. Finally, there is a growing recognition of the links between human and wildlife
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Hurmans and wildlife are exposed to an ever-increasing variety
of man-made chemicals and complex chemical mixtures.
Some of these chemicals have proven to be highly persistent
and do not degrade appreciably in humans or the environ-
ment, thus presenting long-term exposure concerns and
disease susceptibilities. In some instances, they have shown a
propensity for long-range transport by the Earth’s climate and
weather systems being deposited in higher latitudes and some
of the most remote places on the planet.” In fact, synthetic
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important model in bridging thess two conventionally separate areas of
he biological effects of chemical mixtures that could augment its role in

chemicals are now found in every habitat of the planet and
hundreds are detected in a variety of life forms from microbes
to plants extending through food webs up to apex predators
and humans.”™

Historically, efforts to control chemical releases to the
environment have involved technologies and approaches that
reduce or clean up releases after the fact. These “end of pipe”
strategies, while relevant, are being replaced with advances in
pollution prevention technologies that include chemical
reagents, processes, and products that are less hazardous and
more sustainable. The publication of Paul Anastas and John
Warner's important book, Green Chemistry: Theory and
Practice, in 1998, has expanded the field of green chemistry
significantly in the last 20 years and it is now an established
scientific discipline.® This book established 12 principles of
green chemistry that remain an important organizing frame-
work that guides industry, academic, and government scien-
tists., The pursuit of green chemistry goes beyond waste

Green Chem.
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reduction and pollution prevention, and targets opportunities
for design innovation over the entire life cycle of materials
{e.2., chemical) to minimize effects on humans and the
environment.” Closely related and integrated with the prin-
ciples of green chemistry and one of its greatest challenges
centers on emphasizing and adopting more sustainable chem-
istry practices in chemical design.®™® This issue is captured
succinetly by Collins (2001)" in deseribing man-made chemical
design as one that has tended to implement simple reagent
designs but by using a vast array of elements. This is con-
trasted by natural systems that do the opposite, employing just
a limited number of environmentally common elements but
with a diversity of biochemical processes to select for the
desired product or process, With biomimicry in mind, there
have been promising efforts to produce more sustainable plas-
tics using zeolites (microporous aluminosilicate minerals) to
catalyze the transformation of microbially-synthesized lactic
acid to lactide, which is a key precursor to biodegradable poly-
lactic acid plastics that has historically been a costly step in
production.”” Alternative peroxide activating ecatalysts, tetra-
amido macrocyclic ligands {TAMLs), have also been designed
as oxidation catalysts with a number of structural variants that
have shown promise in many uses, including in water disinfec-
tion, pulp bleaching, and the break-down of a growing number
of persistent chemicals, including chlorinated phenols, explo-
sive residues, dyes, pesticides, and synthetic estrogens.”™
These are but just a couple of examples of looking to sustain-
able chemistry in designing functional yet more benign chemi-
cals. However, while these types of efforts are laudable and
hold promise, the widespread integration of green and sustain-
able chemistry into chemical design remains elusive. ™™

In particular, the scale of synthetic chemical production
continues to be enormous with thousands of chemicals used
today throughout the world as industrial feedstocks, pesti-
cides, pharmaceuticals, and nanoparticles, among many other
industrial and household uses. There are currently about
85 000 chemicals that have been produced or imported for sale
in the U.S. since chemical inventory tracking was established
in 1979 under the Toxic Substances Control Act {TSCA), the
primary U.S. statute that oversees industrial chemicals as
amended (Frank R. Lautenberg Chemical Safety for the 21st
Century Act); however, this does not reflect industrial chemi-
cals currently on the market because it is a cumulative
running total. In its most recent data collection, the U.S. EPA
reported that roughly 7760 chemicals subject to TSCA chemi-
cal data reporting requirements were produced or imported
into the U.S. at more than 25 000 pounds {reporting threshold)
during 2011.°% By volume this equated to chemical production
or importation volumes of about 9.5 trillion pounds per year
or 26 billion pounds per day.”' This U.S. snapshot becomes
even more astonishing as it does not include chemicals that
are exempt from TSCA or regulated under other statutory
authorities, such as pesticides, drugs, food additives, and
tobacco products. For instance, in both 20086 and 2007,
approximately 5.2 billion pounds and 1.1 billion pounds of
pesticide active ingredient were applied globally and in the

Green Chern.
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11.8., respectively, covering several hundred biologically active
agents that are regulated in the U.S. under separate statutory
authority.”” The story is similar in the E.U. where estimates
report roughly 100 0600 chemicals available for use. Regulations
enacted in 2006 under the Registration, Evaluation,
Authorization, and Restriction of Chemicals (REACH) program
seek to evaluate the safety of approximately 30000 of these
chemicals.”® Similar REACH-types of legislation also have been
enacted in Asian countries, including China and South Korea,
but the extent of chemical usage is not well described in most
countries, particularly those that are less economically
developed.

Thus, current statutory and regulatory requirements have
resulted in a limited number of environmental chemicals,
such as pesticides and some industrial chemicals, being sub-
jected to more rigorous testing and safety evaluation prior to
market introduction. It also continues to be challenging for
government entities to  balance protecting confidential
business information (CBI) with ensuring the public’s right-to-
know so that there is adequate transparency surrounding the
composition and safety of chemical products. For the remain-
der of the many thousands of chemicals being used today gen-
erally less is known about their toxicity potential in humans
and wildlife. This is not to say that there has not been impor-
tant toxicity testing of non-pesticides, but oftentimes detailed
focus by the broader research community occurs after or in
response to chemicals being detected in humans and the
environment. Moreover, most human health and ecological
effects data used in hazard evaluations for chemical risk
assessment continae to focus on direct measurements of
apical outcomes of concern, such as reproduction and survi-
val. Analyses typically rely on empirical testing of a single
chemical in vertebrate models, such as rodents, with appli-
cation of uncertainty factors to extrapolate toxicity findings
across species and exposure concentrations. Increasingly,
these traditional approaches of single chemical testing with
irn vivo animals are recognized as impractical as evidenced by
the vast resources and time that would be needed to test the
enormous backlog of chemicals and environmental mixtures
for which less evaluation has occurred and the many new
chemistries coming to market each year. Indeed, it has been
several years now since the U.S. National Research Council
(NRC) recommended that shifts were required in human
health toxicity testing from whole animal test systems to
in vitro methods and bioinformatics to better evaluate bio-
logical perturbations and toxicity pathways (Fig. 1)
Ecological endpoints have also been targeted. For example, a
Society of Environmental Toxicology and Chemistry (SETAC)
Pellston workgroup examined how to better incorporate
mechanistic data into predictive ecotoxicity testing and risk
assessment.”” There is also increasing interest in developing
test methods and alternative techniques that consider animal
welfare and minimize the use of animals in pharmaceutical
2957 Thus, the field of toxicology has

traditional  testing methods with
whole organisms and single chemical analyses to more

and chemical testing.
been shifting from

ety of Chemistry
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Fig. 1 Touxicity pathways leading to perturbed biological responses with chemical exposures. Depending on the potency of the chemical exposure
and other biological factors (e.g., life stage. nutritional status, genetics), humans and wildlife may be unable to adapt to toxicant exposures and
riermal physiologicat functioning is compromised leading to disease and/or death. (Adapied from NRC 2007)

predictive-based approaches that strive to characterize early
molecular initiating events and biological modes of action
(MOAs) to identify chemical and chemical classes that warrant
enhanced scrutiny and testing.

This shift in emphasis toward predictive-based approaches
and reductions in animal usage in chemical testing has led to
increasing interest in the use of in vitro and non-mammalian
models, particularly embryonic zebrafish, as biosensors to test
for bioactivity potential. To help prioritize chemicals for
testing, the 1.S. Environmental Protection Agency (EPA),
National Institute of Environmental Health Sciences (NIEHS),
and Food and Druag Administration (FDA} formed a consor-
tium “Tox21” to apply high-throughput technologies to screen
roughly 10 000 chemicals and characterize molecular and bio-
logical targets and pathways underlying toxicity (htip:/fwww.
epa.govineet/Tox21/). In addition, the U.5. EPA launched its
ToxCast™ program in 2007 to further develop HTS techno-
logies with cell-based approaches and embryonic zebrafish to
screen chemical bioactivity.” " These types of predictive-
based test methods with zebrafish provide an opportunity to
design and promote inherently safer chemicals and undertake
bioactivity evaluations early in the chemical discovery process.
The U.S. EPA also has initiated a multi-year transition as part
of its Endocrine Disruptor Screening Program (EDSP) toward
adoption of HTS and computational toxicology approaches o
screen thousands of pesticides and drinking water contami-
nants for possible endocrine bioactivity in humans and wild-
life.” Likewise, the OECD has an extensive test guideline
program in place to support member country efforts to test
chemicals for potential endocrine activity of which zebrafish

Tnis journal is © The Royal Society of Chemistry 2016

testing is included.” Finally, there have been efforts by experts
in green chemistry and environmental health to design and
implement frameworks to guide testing early in chemical
design {e.g, Tiered Prowcol for Endocrine Disruption;
TIPED'®), reduce laboratory animal use {Alternatives to
Laboratory Animals; ATLA’Y); and evaluate evidence for endo-
crine activity (eg, Systematic Review and Integrated
Assessment; SYRINA),

This review describes zebrafish testing strategies that are
advancing our ability to design safer chemicals. It discusses
the rapidly expanding use of the zebrafish model in genetic
toxicology, neurobehavioral testing, and as a core in vive model
in the fields of HTS and computational testing, and how these
technologies can support sustainable chemistry and be posi-
tioned to inform early chemical design. While not without
challenge, these technologies are contributing to a rich array
of more efficient tools to characterize chemical bioactivity and
toxicity pathways across multiple levels of biological organiz-
ation (Fig. 1 and 2). We consider advances in zebrafish testing
strategies that are not only expanding our understanding of
chemical effects on human health but also among natural
biota in ecotoxicology. As such, there is discussion of efforts to
use zebrafish as an integrative model in wildlife toxicity screen-
ing and in characterizing chemical effects on endocrine
system functioning. One of the clear strengths of the zebrafish
maodel is the utility it confers in being able to evaluate chemi-
cal effects across different levels of biological organization.
The popularity of the zebrafish as a vertebrate model of
human disease and chemical toxicity relates to the balance it
confers in providing meaningful biological complexity but

Green Chem.
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Fig. 2 Conceptual diagram of the zebrafish data stream across multiple levels of biological organization.

practical wtility as they can be modified genetically and
pharmacologically thereby filling an important niche between
invertebrate models, such as fruit flies and worms, and more
costly mammalian models. Approximately 70% of protein-
coding genes and over 80% of disease-related morbidity genes
have been shown to have at least one ortholog in zebrafish,
making them a genetically tractable vertebrate model to
humans.*®

The zebrafish also has generally well-conserved organ
systems, tissues, and cell types that make it informative to
studying vertebrate development {Table 1}. This high degree of
conservation makes zebrafish highly applicable to examining
chemical effects on embryogenesis that is translational to
humans and other vertebrate taxa.”” Moreover, while in vitro
test systems and ‘omic’ technologies (e.g, genomics) confer
many advantages and hold great promise, it can be challen-
ging to reproduce results in animal models as biological com-
plexity, such as toxicokinetics and organ systern plasticity, are
not easily predicted. Similarly, persistent issues remain in
interpreting changes in expression (e.g, transcript levels) as

Table 1 Comparison of early developmental of human, rat, and

L x7255.05
zebrafish™ 2557257

Human Rat Zebrafish

Developmental stage (day) {day} {hour)
Blastula/blastocyst 4-6 3-5 2-5
Implantation 8-10 6 n/a
Neural plate formation 17-18 9.5 10
First somite 19-21 9-10 10-11
10 somite stage 22-23 10-11 i4
Neural tube formation 22-30 9-12 18-19
First pharyngeal arch 22-23 10 24
Initiation of organogenesis 21 5 10
First heartbeat 22 10.2 24
birth/hatching 253 21 48-72

Green Chern.

being adaptive or toxic with current in vitro systems. Thus,
chemicals that elicit activity in in vitro assays may require
testing and validation with /n vivo models, Finally, ongoing
pressures to reduce the large numbers of animals used in
chemical discovery and safety testing have prompted focus on
alternative models and zebrafish offer a biclogically relevant
choice.

Genetic toxicology and safer chemical
design

The use of embryonic zebrafish screens in chemical testing
had its genesis in developmental biology with efforts to clarify
genes involved in vertebrate development. Some of this work
employed small molecules as chemical probes to alter gene
functions and products to induce non-heritable phenotypes
that could in turn help reveal early developmental processes.”®
The rapid pace of advances in genetic screening provides an
opportunity to integrate molecular endpoints into safer chemi-
cal design and to foster evaluation of the many thousands of
chemicals already in use. Methods that allow for control of
gene expression can be used to characterize toxic mechanisms
pathways so that chemicals can be designed with structural
attributes that have inherently lower bioactivity potential,
Traditionally, geneticists used forward genetic approaches
in zebrafish and other models to characterize and dissect
genes involved in biological processes, notably embryonic
development {ie, phenotype-based relationships).
approaches have sought to identify DNA elements involved in
biological processes through the screening of populations of
organisms exposed to a mutagenizing agent that produces
random heritable modifications throughout the genome.
Some of the first large-scale forward genetic screens using

These
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zebrafish led to the discovery of a substantial number of
shared genes and pathways essential to vertebrate develop-
ment.”>* In contrast, reverse-genetic approaches (genotype-
based relationships) involve examining the phenotypic conse-
guences of perturbing the functioning of gene targets. Recent
zebrafish genome sequencing/assembly™™ and large-scale
in situ hybridization screens,” among other efforts, have
revealed thousands of candidate DNA elements that may rep-
resent gene targets potentially relevant to chemically mediated
bioactivity pathways and thus relevant to chemical design and
safety.

in the zebrafish community, morpholino oligonucleotides
{(MOs) alse are a widely used antisense gene knockdown tool
to examine toxicity endpoints and disease targets that can be
employed early in R&D to design safer chemicals. MOs are
~25 mer nucleic acid bases that are linked to morpholine
rings with a neutrally charged phosphorodiamidate backbone
that has a high binding affinity to RNA molecules and is stable
#%5 MO applications in zebrafish can act at the RNA
transeript level by inhibiting exon splicing®® or by blocking
translation.*® Despite their widespread use, MOs have limit
ations including variability in the degree of knockdown and
their transient duration to about three days in early embryo-
genesis. There is also the possibility for non-specific cell death
and other off-target effects, such as p53 inductions, that
may produce spurious phenotypes that are not linked to the
targeted gene(s) being knocked Perhaps most
problematie, MO-knockdown approaches in zebrafish have
comne under increased scrutiny with reports of poor correlation
between MO-induced morphants and knockout (KO)}mutant
phenotypes.” !

Several genome editing tools have increased the precision
of generating targeted wwutations in zebrafish that hold
promise in clarifving the toxicity pathways and structure-
activity relationships of environmental chemicals. The human
engineered zinc finger nucleases (ZFNs)>® and transcription-
activator-like effector nuclease ({TALENs)> were the first
methods developed that allowed for the generation of precise
heritable mutations. Both methods create site-specific double
strand breaks (DSBs) at targeted locations of the genome.
These DSBs are then repaired by sequence homology depen-
dent on independent mechanisms that produce targeted muta-
tional edits. While ZFNs and TALENs have been applied in the
zebrafish model, their widespread adoption has been
constrained by limited multiplexing capabilities and the con-
siderable amount of time and cost required designing the
nucleases.”

The clustered, regularly interspaced, short palindromic
repeats (CRISPR)-Cas9 system is a newer genome editing tool
with potentially broad applications, including in characteriz-
ing the genetic pathways involved in toxic responses that
would be highly applicable to safer chemical design. The
CRISPR-Cas9 system relies on a single guide RNA {sgRINA) and
the Cas9 nuclease to generate targeted DSBs next to specific
recognition sites called protospacer adjacent motifs that are
followed by DNA repair to produce genome edits. The

3

in vivo.

down.
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CRISPR-Cas9 gystern in zebrafish has been used successfully to
generate gene KOs, ™Y disrupt rissue-specific genes,”®
implement single nucleotide substitutions,® and introduce
exogenous DNA at specific target sites.®”" It has been shown
to be substantially more efficient at generating germline
mutations in zebrafish than the ZFN and TALEN systems.®”
The first HTS CRISPR-Cas9 phenotypic screen of the zebrafish
genome targeted 162 loci {83 genes).” This screening study
reported a 99% success rate in generating somatic mutations
with an average germline transmission rate of 28%.

An important attribute that makes the zebrafish such a well
suited in vivoe model for human translational research for
chemical discovery and toxicity screening is the capacity to
develop transgenic reporter lines that target specific cells/
tissue types, molecular signaling pathways, and physiological
processes (Fig. 3). Currently, these lines are curated by the
Zebrafish Model Organism Database and maintained by ZFIN,
University of Oregon (Bugene, OR).* This work is contributing
to a rapidly expanding diversity of zebrafish disease models
and drug/chemical screens to understand, prevent, and treat
some of the most recalcitrant and costly diseases of our time,
including those linked to: psychiatric conditions;""®

66-68 6571 Ele‘drt disease;72~74

CAncers; diabetes and obesity;

inumuno-
82,83

neurodegenerative  syndromies;”” " autism;”®
528 aleohol, tobaceo, drug abuse dependency;
and blood disorders,” among many others.

The transcriptome defines the functional and physiological
status of an organism and provides information on the gene
networks that regulate biological processes. One of the
ongoing challenges with zebrafish readouts in chemical tox-
icity screens is that morphological responses are difficuit to

decipher because multiple chemicals may elicit the same tera-

deficiencies;

togenic phenotype (2.g., scoliosis, yolk sac edema). Microarray
technologies have become useful in hypothesis generating in
that they provide an opportunity to dissect toxicological path-
ways at the transcriptional level in developing zebrafish.
Recently, our 1ab used microarray tools to characterize altera-
tions in the transcriptomes of embryonic zebrafish exposed to
the antimicrobial agent triclosan.® By phenotypically anchor-
ing the transcriptional alterations to triclosan-mediated devel-
opmental malformations, it was possible to propose toxicity
mechanisms in zebrafish that may include altered liver devel-
opment and potential hepatotoxicity. Another related multi-
chemical example involved work by Yang and coworkers to
apply toxicogenomic methods in embryonic zebrafish to
assess whether distinet chemicals could induce specific tran-
scriptional profiles.®
using an oligonucleotide microarray containing 16 399 gene-
specific probes. Each of the 11 chemicals tested produced hun-
dreds of genes that were differentially regulated. The
expression profiles induced by the chemicals tested were
highly specific and could be used similar to a barcode to ident-
ify the chemical with high probability. As a final example, to
better understand how zebrafish respond to hypoxia, Ton and
coworkers used microarray technology to measure the
expression changes in >4500 zebrafish genes in embryos

Gene expression profiles were examined

Green Chem.
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Fig. 3 Examples of embryonic transgenic zabrafish. (& and B) The Tglcypla nis-egfp) line can be used as a surrogats for aryl hydrocarbon recepior
(AHR} activity to identify the target organs of chemically exposed larvae. Embryos were continuously exposed to a chemical starting at 6 hpf and
imaged at 48 hpf (A} and 120 hpf (B), with noticeable cypla expression in the liver at 120 hpf (white arrow). {C and D) Tglfli.gfp} embryos, which
axpresses GFP in endothelial cells of the entire vasculature, were injected with glioblastoma cells {red) into the brain of 4 dpf larvae (C) and reimaged
at 7 dpf (D) to understand the invasion and migration behavior of the brain cancer celis in a vertebrate brain microenvironment. (E-G)
immunohistochemistry was used to determine the in situ expression pattern of various genes in the hair cells of the iateral line neuromast of 4 dpf
larvae. (£} 2D composite image stained with antibodies targeting otoferlin {blue), acetylated tubulin (green), and maguk (red). (F) 2D composite
image stained with antibodies targeting otoferlin (green) and vglut3, a synaptic vesicle marker {red). (G} 3D composite image stained with DAPI and
the synaptic protein ribeye (red clusters). While images (E-G) are not from a transgenic ling, the images were included to highlight the ability to
capture high quality in situ expression patterns of genes across development, which is the function of transgenic reporter lines.

exposed to 24 hours of hypoxia during development from
48~72 hpf.¥ The downregulation of energy consumption has
been shown to be a critical defense mechanism against
hypoxia in animals.?® Results from the Ton study showed a
strong coordinated downregulation of genes involved in high

Green Chern.

energy processes, such as protein synthesis, ion pumping
activity, and cell division that were induced by hypoxia and
reversed upon re-exposure to normal oxygen conditions. These
types of microarray studies provided proof-of-principle that the
developing zebrafish can be used as a toxicogenomic model to
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systematically asses the effects of chemicals on gene regulatory
networks, and with ongoing development can be positioned
for use in chemical discovery and the design of safer
alternatives.

However, while microarray continues to be popular and
transcriptomic methods can be used to characterize the mole-
cular mechanisms of chemical effects, they continue to be hin-
dered by their inability to distinguish direct from indirect
effects of a specific treatment. Next-generation sequencing
{(NGS) technologies, notably RNA-sequencing {RNA-Seq), have
emerged more recently in the zebrafish community as an
alternative to microarray. RNA-Seq offers several advantages
compared with microarrays, such as a more complete snapshot
of the transcriptome {e.g, microarrays cannot detect un-
identified transcripts and genes), detection of alternative and
novel gene isoforms, and coverage of a greater dynamic range
at fower abundances. Thus, RNA-Seq appears better suited in
discerning wunigue phenotypes that could be missed with
microarray as it is not based on a priori knowledge of the
transcriptome. Several reports have shown that RNA-Seqg out-
performs microarrays in the ability to identify significantly
differential gene expression by almost 3-fold.>>® The
increased sensitivity of RNA-Seq is attributed to the improved
accuracy for detecting low abundance transcripts. In the zebra-
fish model, a number of RNA-Seq studies have advanced our
understanding of how the transcriptome regulates vertebrate
development by identifying paternally- and maternally-derived
transcripts,”’ the expressed genes during the maternal to
zygotic transition,” and the complete set of detectable tran-
scripts across seven different developmental periods.
information provided by these types of studies can be inte-
grated into toxicogenomic reports to provide a vertebrate devel-

% The

opmental network in which to identify chemical mechanisms
of action. In zebrafish toxicogenomic research, RNA-Seq has
been used to reveal conserved biological pathways inn 2,3,7,8-
TCDD-induced molecular responses in the zebrafish liver com-
pared to in vivo mammalian models,”* identify molecular path-
ways and biomarkers in response to arsenic exposure,” and
elucidate the transcriptional responses to oxidative stress in
tert-butylhydroquinone and 2,3,7,8-TCDD exposed fish.™
Improvements in high-throughput genome wide platforms
have resulted in a fundamental shift away from protein-centric
views of molecular biology. While the number of genes encod-
ing proteins stays relatively constant across a wide range of
developmental complexity, the number of non-coding RNA
(ncRMA) increases with developmental complexity.” Mounting
evidence suggests that neRNAs play significant regulatory roles
in complex, multicellular organisms.”™” As a result, a number
of researchers have looked into the role of ncRNA targets in

zebrafish, such as microRNAs, to elucidate their role in toxicity
100,101

2

In
143

pathways or for use as biomarkers of toxicity."
addition to ncRNAs, the expression profiles of proteins,
metabolites,'”* and DNA methylation patterns'®™% are also
being investigated in order to develop a more comprehensive
understanding of toxicity mechanisms. Continued efforts to

integrate omics data into HTS assays will allow for increased
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efficiency and a deeper understanding of the links between
environmental chemical exposures, toxicity mechanisms, and
disease, all of which can promote safer chemical design and
evaluation efforts.

HTS platforms targeting early
development

Chemicals will tend to interact with, and if toxic, perturb mul-
tiple targets with effects that may manifest as acute, transient,
chronic, or delayed depending on the dose, target, age, and
physiclogical status of the animal in relation to its environ-
ment. Moreover, animals may metabolize chemicals to
bigactive forms that are more toxic than the parent material,
or alternatively may detoxify and excrete chemicals or demon-
strate tissue plasticity that may ameliorate adverse effects.
whole organism screens offer the advantage of a more inte-
grated characterization of chemical bioactivity (Fig. 1) thereby
avoiding some of the inevitable mechanistic bias of single
compound-target pairings and cell-based approaches.

The current state of drug discovery demonstrates some of
the advantages conferred by in vive systems in optimizing
chemical design and evaluation. Specifically, phenotypic-
drivenn screens with whole animals have demonstrated a
higher success rate in identifying promising drug therapeutics
than target-based approaches that use in vitro and cell culture
systems.'”” Although target-based approaches have yielded
many thousands of candidate molecules, this has not trans-
lated into an increase in drug discovery. About 40% of new
candidate molecules fail during preclinical toxicological safety
evaluations at great expense and the sacrifice of many test
animals.”® The reasons for the high failure rate of target
driven approaches are undoubtedly multifaceted and relate to
factors such as the inability to model toxicokinetics and off-
target effects in an in vitro system. Additionally, these
approaches have limited capacity to predict whether modifying
a specific target will ameliorate a downstream disease pheno-
type. These challenges in drug discovery are informative to
green chemistry and safer chemical design as they demon-
strate some of the limitations of cell-based approaches and the
ongoing importance of in vive models, particularly those like
zebrafish that fill a niche between i vitro and higher ver-
tebrate testing.

An ever-increasing number and variety of low, medium, and
higher throughput in vive screens with zebrafish embryos have
been and continue to be developed that target an increasing
variety of pathways and endpoints {e.g., teratogenicity, endo-
crine disruption, cardiotoxicity, efc.). The implementation of
these screening formats with zebrafish has accelerated dra-
matically in recent years to promote the design of safer chemi-
cal alternatives (Fig. 2). While it is not possible to discuss all
the many zebrafish assays that have been employed in toxicity
evaluations, several approaches are notable due to their
relevance to safer chemical design and given the range of
chemical structures they aim to consider. They are now being
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used to test numerous environmental toxicants, pharma-
ceutical agents, and chemical libraries across a range of life
stages, transgenic and mutant fines, test concentrations, and
exposure durations.'” One of the clear advantages of zebrafish
HTS designs is that only very small amounts of test compound
in the microgram or microliter range are typically needed,
whereas studies in mammalian assays can require upwards of
several hundred grams of compound depending on study
design and duration. In addition, zebrafish have been shown
to be relatively non-responsive to the carrier solvent dimethyl
sulfoxide (DMSO)."'® This tolerance to DMSO has made it poss-
ible to test an array of chemical structures, including many
higher MW chemicals with hydrophobic functional groups that
would not ordinarily solubilize in aqueous media, These favor-
able attributes become especially relevant in early screening of
chemical libraries and structures as part of early R&D testing
where typically only very small amounts of compound are syn-
thesized with any number of different structural moieties con-
ferring ditferent physicochemical and biological properties.

HTS methods that use embryonic zebrafish are generally
consistent with one another in that they use a multi-well plate
format to test chemical effects on embryonic development and
by assessing mortality and deformities across a range of

Gastrula Period
Shield; 6-hpf

Cleavage Period
4-cells; 1-hpf

Blastula Period
Sphere; 4-hpf
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phenotypes, chemical structures, and concentration ranges
(Fig. 43, Medium and higher throughput toxicity screening
assays with zebrafish embryos have been developed in the U.S,
as part of the U.S. EPA-National Center for Computational
Toxicology (NCCT) ToxCast program.”® %™ Ag a part of this
effort, for instance, Padilla and coworkers conducted a devel-
opmental toxicity study with embryonic zebrafish to screen
~300 chemicals (i.e., mostly pesticides) comprising the Phase
1 ToxCast chemical library.®® Larvae were scored for survival
and overt malformations at 6 dpf. A subsequent study con-
ducted in our lab by Truong et ol (2014)'" used a similar
format to the Padilla [ab with some differences. Truong et @l
(2014)"" evaluated over 10006 chemicals that included the
Phase 1 ToxCast chemicals rested by Padifla et al {2012)° plus
the several hundred chemicals in the Phase 2 ToxCast library.
Padilla and coworkers used intact chorionated embryos
exposed by static renewal for five days with evaluations on day
six, while Truong and coworkers used dechorionated embryos
exposed by static non-renewal with evaluations on days one
and five. Test concentration ranges were similar, but the
Traong study used larger sample sizes and targeted more
phenotypes. In terms of screening, Padilla et al (2012%)
ranked and scored malformations based on severity to caleu-

Segmentation
8 somites; 13-hpf

Bud Stage; 10-hpf

Dechorionation
Robotic plating

Screening
Age staging

Chemical
exposure

Newly fertilized
~18 min

egmentation
7 somites; 17.5-hpf

Free Swimming Larvae
120-hpf, ~“4 mm

Larval Period; Protruding mouth
72-hpf, V3.5 mm

Pharyngula
24-hpf, ~2 mm

Fig. 4 Example of embryonic zebrafish high throughput screening (HTS) platform. Embryos are life staged, screened for viability, and placed into
well plates. Chemical exposures typically occur from 6-120 hours post fertitization (hpf). While chemical screens can occur at different life-stages
depending on study goals, morphological svaluations and behavioral assays are conductad often during (1) the early pharyngula stage at 24 hpf
when the heart is first clearly visible in a distinct pericardial sac and body/tail flexions initiate with development of the sensory-motor system; and (2)

free swimming larvae represented by inflation of the swim bladder, largely completed developmental morphogenesis, and rapid growt
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late half-maximal activity concentration {ACs,) values; Truong
et al. (20147""" scored deformities as binary, either present or
absent, and computed lowest effect levels (LELs).

While the methods implemented and results in the Padilla
and Troong studies digressed both observed similar results.
padilla er o (2012)° found that 62% of the ToxCast Phase 1
chemicals were toxic at one or more concentrations at or below
the highest concentration tested (80 pM). Likewise, Truong
detected toxicity in 60% of the Phase 1 chemical library
measured as a positive hit for mortality and malformation
ACross one or more concentrations at or below the highest con-
centration tested (64 uM). The high percentage of toxic out-
comes was expected given that most of the ToxCast Phase 1
chemicals are pesticides. In comparing positive hits across the
two studies, 75% of chemicals scored as toxic in the Truong
study were also scored as toxic in the Padilla study, suggesting
good concordance across the two platforms but with differences
likely attributable to study design. For example, retaining or
removing the chorion and variable exposure conditions would
be expected to influence the bicavailability and internal dosinm-
etry across the two studies depending on the chemical.
Nonetheless, it appears that for chemicals with expected bioac-
tivity, the more limited phenotypic screening by Padilla and co-
workers was able to identify chemical-induced developmental
abnormalities. Questions remain for compounds with unpre-
dicted or unknown bioactivity that may require more rigorous
screening. For example, Truong ef al. (2014} identified early
notochord deformities in embryos exposed to thiccarbamate
pesticides that may not have been identified with a more Hmited
phenotypic screen. Thus, there continue to be important con-
siderations as to the breadth and depth of phenotypic screening
to balance appropriate rigor (i.e., avoiding false negatives and
positives) with maintaining speed and screening capacity.

Similar zebrafish HTS platforms of early development have
been used in the design, testing, and evaluation of new cherm-
istries, notably engineered nanomaterials (ENM)L™ 7Y A major
challenge with ENM design centers on identifying features that
not only confer desired performance but also minimize toxicity
potential. The enormously varied and rapid pace of new ENM
structures makes it impractical, absent great time and cost, to
conduct extensive in vivo-based safety testing without dramati-
cally slowing R&D. Optimizing the biocompatibility of ENM is
not a trivial matter as their elemental composition, surface
functionality, core size, and purity, among other features, may
vary enormously and are technically difficult to characterize.
HTS platforms with embrvonic zebrafish have shown utility in
ENM design as they have been integrated into other platforms
intended to characterize the stractural features of ENMs. For
example, HTS platforms with embryonic zebrafish have been
combined with other design methodologies to characterize the
physicochemical features {e.g,, charge, core size) of different
gold nanoparticles {AuNP} that impair development {Harper
et al, 2001"**), Characterizing structural attributes that confer
bicactivity can be used as a framework for incorporating safety
measures into ENM design to broadly identify structural fea-
tures in ENM that are not desirable.
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These types of screening methods have clear utility in iden-
tifying chemicals with heightened or reduced biocactivity that
could serve as a useful approach for prioritizing chemicals for
more testing and to facilitate the design of safer alternatives.
One key challenge with characterizing toxicity results from
large, structurally diverse chemical libraries relates to dissect-
ing potentially related responses and common toxicity mecha-
nisms among a datarich and complex set of phenotypes
across a range of structures. To begin to address these chal-
lenges, a recent study published by our lab*™ applied the mor-
phometrie screening rechniques by Truong ef al. (2014)"" and
integrated results of two locomotor behavioral assays of photo-
motor responses to characterize the toxicity of over 40 structu-
rally diverse flame retardant (FR) chemicals and their metab-
olites.”™ Hierarchical clastering and principal component
analysis (PCA) were employed to evaluate interactions and
differences in bioactivity across the morphological and behay-
ioral platforms to discern chemical classes and structural fea-
tures that confer elevated bipactivity (Fig. 5). Results of this
study measured FR biocactivity in one or more of the assays
and across one or more test concentrations, and found that
organophosphate FRs with isopropyl, butyl, and cresyl substi-
tuents on phenyl rings were especially potent. In sum, this
type of integrated HTS approach not only pointed to ongoing
concerns for the safety of FRs in use but provided approaches
that could be helpful in designing FRs with intrinsically lower
bigactivity potential.

Other combinatorial approaches have also been employed
to integrate zebrafish HTS with other high content platforms.
For example, a large number of organophosphate FRs were
recently tested with a battery of HTS platforms that included
zebrafish high-throughput methods similar to those con-
ducted in the Padilla, Truong, and Noyes studies, as well as a
divergent set of in vitro assays.” A point of departure (POD)
approach was implemented to compare the relative activity of
flame retardants tested across the different test platforms. In
addition to efforts to rapidly compare effects across multiple
platforms, there have been advances in zebrafish technologies
that allow for rapid three-dimensional imaging and pheno-
typing.”™ One of the ongoing limitations of many zebrafish
HTS approaches is that most embryonic screening involves the
manual examination of chemical effects against a set of devel-
opmental defects. This aspect of HTS can be time-consuming
and subject to variability depending on the reviewer and lab.
There have been promising efforts recently with advanced
optical imaging platforms, such as optical projection tomo-
graphy (OPT), to automate in vive phenotyping of developing
zebrafish embiyos.”* ™ Ongoing advances in imaging and
analysis of different developmental phenotypes should augment
the speed and reproducibility of zebrafish HTS platforms.

Ecotoxicology testing

The use of traditional lab models in ecotoxicology has proven
to be time and resource intensive, logistically challenging
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Fig. 3 Chemical structure—activity data analysis of flame retardant (FR} chemicals with embryonic zebrafish high throughput screening (HTS) and
photomotor response (PMR) behavioral testing at 24 and 120 hpf, including: {A) heatmap and hierarchical clustering of morphological and behavioral
responses {measured as lowest effect levels; LELS) across FR structural groupings; and (B} two-dimensional principal component analysis {PCA} to
identify FR clustering patterns based on teratogenicity and behavioral perturbations.™®

whether conducted in the field or laboratory, and difficult to
translate from the lab to wild populations and across species.
As a result, like in human health, there has been an accelerat-
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ing shift from empirical methods to pathway-based methods
that rely more on predictive tools and models. Some of these
methods seek to characterize putative adverse outcome path-
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ways (AOPs) to describe the molecular initiating events (MIEs)
and cascades of intermediate key events (KEs) that may culmi-
nate in an adverse outcome, such as impaired reproduction or
population declines.”>”>"** In this context, the zebrafish is
becoming a useful translational vertebrate model to study
chemical bioactivity potential for ecological risk assessment.
Perhaps one of the more directly applicable effores relates to
the EU REACH initiative to implement the embryonic zebrafish
as a test model to replace fish acute toxicity testing require-
ments.”>"® REACH has been the subject of criticism due to
the predicted inecrease in animal testing it triggers and
ongoing concerns surrounding how fish experience pain and
duress."”*®"” The fish embryo toxicity (FET) screen with zebra-
fish was developed in part as an alternative model to be
responsive to these animal welfare concerns. Additional
benefits of FET screens, like with HTS assays more broadly,
include that they are efficient and require only small amounts
of chemical.

The OECD guidelines for zebrafish FET testing were fina-
lized and adopted in 2013," although FET approaches have
been used in Germany since 2005, The guidelines are straight-
forward and require that newly fertilized zebrafish embryos be
exposed to test chemical for 96 hours with microscopic exam-
inations every 24 hours for lethality and other indicators of
fatled developmental progression, including embryonic coagu-
lation, impaired somite formation, non-detached tail buds
from volk sacs, and lack of a heartbeat. The performance of
the zebrafish FET assay in reproducing acute fish toxicity
testing results {mined from U.S. EPA ECOTOX and ECETOC
Aguatic Toxicity (EAT) databases) was guantified recently for
about 140 pesticides, feedstocks, and other chemicals repre-
senting a variety of chemical structures.” The results
measured as half-maximal effect concentration (EC50) values
were generally highly correlative across the testing platforms,
supporting its adoption for fish ecotoxicity testing. Efforts
have been made to try to extend the acute FET assay to include
gene microarray analyses for assessing chronic fish toxicity
endpoints but overall these tools remain limited to acute end-
points.”>"" Thus, like with the zebrafish HTS platform more
broadly, the FET assay appears to be poised as a useful
approach for ecotoxicity applications and chemical design.

The characteristics that make the zebratish an excellent
maodel for predictive human health assessments are also
directly relevant in the context of ecological risk assessment.
while historically human health and ecological effects have
been assessed using distinct testing methodologies, both disci-
plines are moving toward predictive approaches that take
advantage of our increasing knowledge of biological pathway
conservation. Perkins and coworkers recently published
approaches that use pathway-based POD data and benchmark
dose modeling from embryonic zebrafish exposed to the devel-
opmentally toxic pesticide flusilazole to derive human dosing
values."*” These values in zebrafish aligned with those derived
from more conventional rodent models and provide some
demonstration of how zebrafish can be used to assess chemi-
cal risk. The zebrafish may prove to be especially valuable for
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examining chemical effects on aquatic wildlife because it is
increasingly feasible with HTS screens and genetic testing to
target  multi-chemical  exposures  and  non-chemical
interactions.”*™"**  ¥or instance, developmental
leading to cardiac toxicity and heart failure are a well-

described sensitive target for the effects of some petroleum-
135,136

defects

derived PAHSs and their mixtures. Hicken and coworkers
used zebrafish to show how low levels of PAH exposures to
embryos interfered with genes involved in heart development
that in twrn led to reduced swimming performance and
changes in ecardiac ventricular morphology in adult fish.'*
This mechanistic work with zebrafish is important because it
clarified a potential pathway leading from delayed individual
toxicity to potentially impaired population fitness among wild
fish populations exposed to PAHs by oil spills, hazardous
waste sites, and other exposure pathways.

Chemical screens for endocrine
activity

Endocrine disruption caused by chemical exposures has been
the subject of intensive research and continues to be a
concern among many environmental and public health scien-
tists and government agencies.””™ ™ To date, toxicity
studies of potentially endocrine active substances have empha-
sized the brain-gonadal axis and the brain-thyroid axis.
Relatively fewer studies have examined the potential for chemi-
cally mediated endoerine activity beyond the gonadal and
thyroid axes, and even less have focused on the cross-talk
underlying hormone regulation and signaling and how chemi-
cals might interfere with these permissive feedbacks. Some evi-
dence may also support perturbations of the vertebrate endo-
crine systemns at low levels of chemical exposures along with
non-monotonic dose-response relationships,'4t14H19°
Hormonal systems are involved in many biological responses
that are life-stage specific; thus homeostatic perturbations may
have profound or transient consequences depending on the
age of the organism. The critical importance of thyroid
hormone in early fetal development contrasted by the revers-
ible effects {e.g., weight gain} of thyroid hormone insufficiency
in adults demonstrates this relationship.**

with the rapid advances in genetic testing that allow for
characterization of chemical MOAs, the zebrafish has gained
prominence in endocrine toxicology as the vertebrate endo-
crine gystern, inclusive of the hypothalamus, pituitary, thyroid,
pancreas, adrenal gland {fish interrenal organ), ovaries, and
testes, are  evolutionarily generally
comparable."** ™ Although important differences exist
between reproduction in mammalian and non-mammalian
vertebrates, reproduction in jawed vertebrates is controlled by
the hypothalamic-pituitary-gonadal (HPG) axis and the struc-
ture of this endocrine system is shared. Sex steroid hormones
are produced primarily in the gonads of both fish and tetra-
pods with a synthesis pathway that involves gonadotropin-
activated signal transductions, cholesterol mobilization and

conserved  and
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transport, and a multistep enzymatic conversion of cholesterol
to steroid hormone. Rate Hmiting steps in steroid production
are mediated by production of the steroid acute regulatory
(StAR) protein involved in cholesterol transport as well as
aromatase, which is a member of the CYP family and regulates
estrogen biosynthesis. Both StAR protein and aromatase have
been shown to be phylogenetically conserved.”** ™ The
general architecture and functioning of the thyroid system is
also shared among vertebrates and includes the tightly con-
trolled synthesis of thyroid hormone by the hypothalamic-
pituitary-thyroid (HPT) axis and its homeostatic regulation in
circulation and target tissues by the activity of iodothyronine
deiodinase {Dio} enzymes and other processes. Thus, numer-
ous research efforts have capitalized on this shared biology
and used zebrafish to elucidate mechanisms by which chemi-
cals may alter normal endocrine functioning.">®

While it is beyond the scope of this review to describe all
aspects of zebrafish use in characterizing chemical-induced
endocrine activity, several approaches are highlighted specifi-
cally because they demonstrate how this model can facilitate
the design and evaluation of inherently safer and more sus-
tainable chemicals. For example, methods involving transcrip-
tomic analyses of embryonic zebrafish have been employed to
identify putative estrogen and androgen responsive genes with
exposures to hormones and endocrine active synthetic chemi-
cals.’ """ There are also an increasing variety of zebrafish
transgenic fluorescent reporter lines that have been developed
to assist in visualizing and characterizing the effects of poten-
tially endocrine active chemiecals on brain-gonadal signaling

pathways, including cypi9a,'® 7" vitellogenin egg precursor

protein;™® growth hormones;™™ estrogen receptors;® %
gonadotropin releasing hormone (GnRH} signaling;'”® and

glycoproteing encoding follicle stimulating hormone (FSH)
and luteinizing hormone {LH)."”' The development of zebra-
fish transgenic models now extend to other components of the
endocring system that are possible targets of chemicals,
including those linked to the brain-thyroid axis,” "™ ® endo-
crine pancreas development and funetioning,””"° and
adrenal-stress responses. %

Differences in fish and mammal endocrine signaling path-
ways also can be positioned to further advance our under-
standing of hormonal and chemical effects on other important
biological processes. Questions have been raised about the lin-
kages between neurogenic pathways and aromatase activities
in neurological disease, including the role that xenoestrogen
exposures may play. Estrogens, in addition to controlling
reproduction, have been shown to have extensive and measur-
able effects on neurogeneration and neuroplasticity in many
parts of the brain.'®® Zebrafish have shown a remarkable
ability to repair and renew their brains {and other tissues)
after tranmatic damage in contrast to mammals that have very
limited regenerative competencies.”™ **> Moreover, the neural
tissues of adult teleost fish have been shown to have 100-10600
fold higher estrogen-synthesizing aromatase activity than in
corresponding  neural tissues of mammals, including
homans.'™ Two distinet genes encoding aromatase enzyme,
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namely cypi9¢ and cyp19h, have been isolated in zebrafish
with cyp19b being expressed mostly in the braing and cyp?9¢a
expressed in the gonads."™ ™ Expression of cyp19h and
aromatase B protein in the brain has been restricted to radial
glial cells of adult teleosts.'”® Radial glia are increasingly
recognized as progenitor cells that not only are the source of
brain neurons during development but are key to ongoing
neurogenesis in adult animals."”" Thus, taken together, the
zebrafish may prove to be an important model in exploring the
relevance of aromatase and estrogens in tissue repair and
regeneration signaling programs, including how endocrine
active chemicals and drug agents may hinder or enhance these
effects. "7+

More broadly, there have been efforts to design protocols
that integrate zebrafish testing with other approaches to evalu-
ate the potential for chemicals to interact with the endocrine
system. The Tiered Protocol for Endocrine Disraption (TiPED)
protocol is one such effort. It describes a step-wise approach,
ranging from i silico tools to in vitro assays and whole organ-
ism studies, including with zebrafish, to inform chemical
design efforts that minimize endocrine activity.'® TiPED is
intended to foster more sustainable chemical discovery under
a non-regulatory framework by providing a tiered methodology
for interrogating chemicals for potential endocrine activity.
For example, this framework was implemented to evaluate
several TAML activators, which are proposed alternatives for
water treatment and as oxidizers in breaking down synthetic
estrogens and some persistent organic chemicals.®™® As a part
of this effort, embryonic zebrafish HTS platforms were
implemented to screen these compounds for developmental
toxicity. TIPED is an innovative approach for integrating chem-
istry and toxicology that could serve as a model for guiding
chemical design to mitigate against other potentially chemical
mediated adverse cutcomes {e.g., diabetes, carcinpgenicity). It
could also be expanded to other endpoints and bicassays that
may be indicative of potential chemical bioactivity, For
example, zebrafish behavioral assays have also been applied in
a limited manner to examine the effects of endocrine active
chemicals on possible stress and anxiety endpoints using a
‘novel tank' test."” The novel tank test has been developed to
measure behavioral responses to andety (e.g., diving, delayed
habituation,  thigmotaxis} in  zebrafish  exposed to
chemicals.”" " These behavioral assays have been used by
Cachat and coworkers to quantify behavioral indices of anxiety
in zebrafish {induced by stress or chemical} and to integrate
measurements of whole body cortisol.””> Reider and coworkers
employed this type of novel tank test and reported that chemi-
cally-induced hypothyroidism with the goitrogen methimazole
exacerbated anxiety (latency in exploration/habituation) in
zebrafish larvae.™® In another example, zebrafish behavioral
testing has been useful in describing how the potential estro-
genic properties of BPA could manifest in a complex array of
altered behaviors. BPA is a suspected endocrine active chemi-
cal that has been shown in some testing to behave like an
estrogen mimic.”””*® Recent evidence in BPA-exposed zebra-
fish identified sex-specific differences in behavioral responses
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in that male fish were less active (swimming distance, territori-
ality, and aggression) and circadian rhythms were pertarbed in
comparison to control males.”" No significant BPA-linked be-
havioral effects were reported in females in this study. These
tvpes of studies demonstrate the potential for zebrafish behay-
ioral assays to provide a fuller understanding of chemical
effects on endocrine-linked anxiety responses and other behav-
ioral domains. However, the results continue to be difficult to
interpret. For example, the extent to which anxiety and other
behavioral responses in zebrafish are analogous to those of
higher vertebrates remains to be clarified. Further studies are
also needed to better understand how different zebrafish
strains and mutant lines respond in behavioral testing.
Another obstacle involves controlling for subtle morphological
changes {e.g., musculoskeletal deformities} that might not be
detected upon visual inspection but nonetheless could influ-
ence fish motor responses. Nonetheless, with continued work,
behavioral testing in the zebrafish holds promise in providing
a fuller picture of chemical MOAs that proceed in part or sub-
stantially through the endocrine system.

Behavioral testing in zebrafish

A number of efforts are underway to develop higher through-
put behavioral test methods that use embryonic and larval
zebrafish to characterize chemical effects on early neurobehavioral
responses that could be highly informative to safer chemical
design efforts. One promising area of chemical-behavioral
testing involves using embryonic zebrafish (~6 to 120 hpf) as
part of developmental neurotoxicity screen to examine chemi-
cal effects on early sensory-motor system patterning of the
developing nervous system. Starting at 17-19 hpf, zebrafish
begin to spontaneously contract their tails reflexively with
advancing development of the sensory-motor syster.”” This
response has been shown to be highly sensitive and excitatory
to light through non-ocular photoreceptors and neuronal path-
ways activated in the caudal hindbrain and that may involve
opsin-based signaling.”™ Targeting this non-ocular response,
photomotor response (PMR) platforms with embryonic zebra-
fish have been designed and validated with large chemical
libraries, including approximately 14 000 neuroactive drugs.”™
Briefly, they are rapid assays that involve using a multi-well
plate format with chemically-exposed embryos, typically at
24 hpf, and measuring tail contractions and flexions upon
short pulses of intense light followed by darkness. Using this
type of HTS format and behavioral phenotyping, Kokel and co-
workers found that different structural and functional classes
of neurcactive chemicals clustered and elicited specific and
reproducible behavioral phenotypes in embryonic zebrafish.””
For example, chemical psychostimulants and anxiolytics
increased and decreased motor activity, respectively, through-
out the test and regardless of whether light or dark was
applied. Dopamine agonists lengthened PMR latency periods,
and serotonin reuptake inhibitors showed brief but robust
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responses to light and even caused stimulated activity to a
second light stirnulus.

Qur laboratory in collaboration has also instituted similar
PMR assay designs to test environmental chemicals, including
scereening the PMR responses of embryonic zebrafish exposed
to the roughly 1000 chemicals in the U.S. EPA’s Phases 1 and 2
ToxCast libraries.”® Chemicals that caused light-dependent
and -independent effects on embryonic movement in this
assay predicted teratogenicity later in older larvae at 5 dpf. In
further demonstration of its utility in safer chemical design,
this embryonic PMR assay was one of two behavioral assays
used recently to test a suite of FR chemicals with variable
structural attributes, being integrated into a platform that also
measured PMRs and morphometric responses in larvae at 3
dpf.*™® Consistent with observations by Reif and coworkers,
the presence or lack of PMR effects in 24-hpf embryos exposed
to FRs was predictive of survival and teratogenicity detected
later in larvae at 5 dpf. Specifically, the 24-hpt PMR assay pre-
dicted the presence or absence of morphological defects for
approximately 80% of the FR chemicals examined at 5 dpf
when combined with PMR testing of larvae at 5 dpf, the con-
cordance increased and the presence or absence of 24-hpf and
5-dpf PMR effects predicted 5-dpf teratogenicity for 93% of the
flame retardants tested.

Other behavioral screening methods have been applied to
take advantage of these earliest movements of embryonic
zebrafish. For instance, chlorpyrifos insecticide and other well-
described developmental neurotoxicants have been used as
training sets to guide and validate embryonic zebrafish spon-
taneous tail contractions for use in developmental neurotoxi-
city screening.”® Raftery et ol (2014) used a 384-wellplate
format and exposed transgenic embryonic zebrafish (fliz:e¢fp)
from 5-25 hpf to 16 chemicals from the U.S. EPA ToxCast
Phase 1 library.”® This study employed enhanced green fluo-
rescent {(eGFP) stably expressed in the vascular epithelium of
this transgenic line to measure spontaneous tail contractions
as an early indicator of developmental neurotoxicity. In this
study, tail contractions were absent but no gross morpho-
logical defects were observed among embryos exposed to aba-
mectin insecticide from 5-25 hpf. This absence of movement
is consistent with other studies showing abamectin neuro-
toxicity being linked to it agonizing GABA receptors that stinu-
lates release of GABA neurotransmitter and produces paralytic
responses. 720

A number of larval zebrafish screens of behavior have been
developed, such as measuring preferences, aversions, and loco-
motion during alternating periods of light and dark. Zebrafish
larvae display consistent patterns of visual locomotor activity
upon alterations between periods of light and dark, and have
been shown to be dark aversive.”*™'* When light is removed a
pronounced increase in [ocomotion occurs that gradually sub-
sides as darkness continues. While the underlying reason for
this behavior is still not well deseribed, it has been postulated
to be adaptive responses to avoid predators and forage for
food. Specifically, evolutionary survival pressures in minnows
such as the zebrafish are thought to have given rise to exten-
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sive and rapidly developing sensory-motor behaviors, such as
saccadic eye movements, optomotor reflexes, rheataxis, startle-
escape locomaotion, olfactory and feeding behaviors, circadian
thythms, learning, and memory.”" Thus, the rapidly increas-
ing locomotion observed when larval zebrafish are subjected
to darkness has been suggested to be a tractable measure
of anxiety, and the decline in movement that is typically
observed as darkness continues is proposed to represent
habituation.” ™" PMR assays in zebrafish larvae are now
becoming increasingly standardized in application although
test regimes may vary depending on the goals of individual
studies. Typically, movements of chemically-exposed and
control larvae are tracked using a closed box that has a muld-
well plate holder, internal lighting system for applying stimuli,
and a mounted video camera and software to track and inte-
grate movements for subsequent analysis. These types of larval
zebrafish assays have been used in HTS platforms to examine

neurchbehavioral responses and in some cases underlying
neurotoxicity mechanisms for a variety of chemicals, including
ethanol,”" " nicotine;” plastic components and addi-
;222223 7225225 fhyorinated  surfac-

tives; nanoparticles,
pesticides,” >

flame retardants,

219

226,227 118,228-230

tants, and
pharmaceutical agents,

Beyond PMR assays, other locomotor assays and cluster
analyses in larval zebrafish have been able to predict targets
for chemiecals using behavioral profiling. For example, Rihel
et ol {20101 developed a HTS platform of rest/wake cycles
with larval zebrafish and applied it to over 5600 psychoactive
drugs to identify important clustering patterns representing
relationships between behavioral phenotypes, chemical struc-
tures, and biological targets. They showed that neurpactive
drugs with different neuro-mechanisms of action {e.2., seroto-
nergic, adrenergic, dopaminergic} elicited distinct behavioral
phenotypes. Hierarchical clustering revealed that drugs with
correlated behaviors shared common targets and therapeutic
mechanisms, allowing in turn for the proposal of targets of
chemicals with poorly understood modes of action. For
instance, amitraz insecticide, which is used to treat tick and
mite infestations in pets and farm animals, clustered with
other a2-adrenergic agonist drugs, such as clonidine and gua-
nabenz, reinforcing evidence that this pesticide targets o2-
adrenergic receptors and the sympathetic nervous system.
Thus, it is clear how continued progress with these types of be-
havioral platforms could be highly applicable in designing
safer chemicals with minimized bioactivity.

Like with developmental life stages of zebrafish, the adult
zebrafish has also become a popular model to probe how be-
havioral and neurobiological endpoints are impacted by
chemical exposures. & range of behavioral tests have been
designed to target different domains associated with sensory-
motor systems, cognitive functioning, and even those more
subtle responses related to learning, memory, and anxiety.
Indeed, zebrafish adults and juveniles have been shown to
display a variety of complex behaviors, such as shoaling and
schooling,” " kin recognition,”**” territoriality,””® associ-
ative learning,”” ™" and non-associative responses (e.g.,
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habitaation};”"® however, as with the neurosciences broadly,
our understanding of vertebrate and zebrafish neuroethology
and how chemical exposures in turn may cause brain pathol-
ogies that produce maladaptive behaviors is an area with many
unknowns.

Challenges going forward

While advances in zebrafish testing provide opportunities to
predict and characterize chemical structure-activity relation-
ships that promote chemical design for reduced bioactivity, it
is important to continually evaluate and choose the most
appropriate model for toxicity testing based on research goals
and the advantages/limitations of the test organism or assay.
For instance, maximizing the use of zebrafish in neurctoxicity
testing will require continuing to expand our understanding of
the relationships between the structure and function of the
CNS and PNS of zebrafish and higher vertebrates. This does
not negate the use of zebrafish in characterizing chemical
effects on the developing or mature nervous system, but rather
peoints tw an area where understanding the homologies and
distinguishing aspects of brain and neurological patterning
across vertebrate taxa will facilitate a deeper understanding of
chemical effects on these pathways and interpreting the
results of zebrafish behavioral tests.

Likewise, inn addition to some of the characteristics that dis-
tinguish zebrafish from higher vertebrates, differences in toxi-
cokinetics and metabolic capacities across vertebrates merit
discussion. The rate of absorption, distribution, metabolism,
and excretion (ADME) is an important parameter for under-
standing the bicavailability, internal dosimetry, and ultimately
the toxicity of a chemical. In vitro studies are limited in that
ADME cannot be directly observed. The zebrafish provides a
functional system for understanding some of the internal
dosimetry and dynamics of chemical exposures. They express
the full complement of CYPs seen in higher vertebrates and
well-conserved Phase 2 enzyme systems such as transferases
involved in endogenous and xenobiotic detoxification path-
ways.”*?"* Despite these similarities, the metabolic capacity
of embryonic zebrafish in comparison to higher vertebrates
continues to be an area in need of study. Another related chal-
lenge with zebrafish HTS assays is being able to extrapolate a
nominal concentration spiked in exposure medivm to an
internal dose in the embrvo and a dose relevant for risk ana-
lysis. Absent direct measurement at great cost and time,
without knowing the embryonic dosimetry kinetics it is
difficult to extrapolate results to a mammalian dose for trans-
lation to humans and other higher vertebrates. Moreover,
metabolic capacity and toxicokinetics in fish can differ from
mammals for some chemical classes that may in turn influ-
ence toxicity and targets. For instance, oxidative metabolism of
PBDE FRs appears to be only a minor metabolic pathway in
fish whereas it dominates PBDE metabolism in mammals
producing bioactive hydroxy-PBDE (OH-BDE) metabolites.”™
Another example of these metabolic differences is observed
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with some pesticides. Exposures to chlorpyrifos metabolite,
chlorpyrifos oxon caused extensive malformations in testing
by Truong et al (2014)"" whereas chiorpyrifos parent was
negative for the same endpoints, thereby reinforcing the
importance of metabolic considerations in embryonic screens
with zebrafish.

Issues pertaining tw differentdal toxicokinetics across
species and life-stages raise questions about the concordance
of embryonic zebrafish HTS data with toxicity observations in
higher level vertebrates {mice, rats, rabbits). There is a growing
body of evidence suggesting high concordance between zebra-
fish HTS and mammalian toxicity results that is consistent
with cross-mammalian comparisons and supportive of predic-
tive-based approaches centered on toxicity pathways.>*%*%
However, the physicochemical properties influencing toxicity
in embryonic zebrafish HTS assays are less clear. For example,
in terms of putative chemical uptake, an important discordant
result observed between the ToxCast testing by Padilla ef ol
(2012)°° and Truong et ol {2014)""" pertained to identifying
physicochemical properties influencing toxicity, The Padilla
study found that toxicity and potency were correlated with
chemical hydrophobicity {log P). As the log P increased for a
chemical so too did its toxicity; however, these positive corre-
lations to log P were not detected by Truong et gl (2014)"
that examined a larger set of chemicals and dechorionated
embryos prior to exposure, suggesting that uptake, equilibrium
partitioning, and ultimately the toxicity are influenced by the
chorion. The zebrafish chorion contains pores that are about
0.17 pym” that may contribute to size-dependent exchusion of
some larger compounds >3 kDa.”%**® 1 at least one study,
consistent with Padilla et ol {2012)°, chemical toxicity
increased in chorionated zebrafish embryos (48 hpf) with
chemical lipophilicity, but overall toxicity was greater in
embryos that had been dechorionated.”®® Moreover, in this
same study, while the chorion was reported to not play a role
in toxicity for hydrophilic chemicals, exposures among dechor-
ionated embryos caused disturbed swimming in larvae that
was not observed among exposed chorionated embryos,
suggesting that the chorion offered some functionality.
Additional work is needed to understand the role, mechanism,
and importance of the chorion in influencing toxicity.

Another area where there continues to be research chal-
lenges relates to interpreting the readouts of the rapidly
expanding diversity of zebrafish behavioral assays. These
assays show great promise for understanding chemical effects
on animal behavior for translation to humans and by exten-
sion safer chemical design. While the power of PMR behavioral
profiling as a predictor of chemical structure toxicity holds
promise, additional work would help to continue to expand its
use by further defining the specificity of the embryonic PMR
mechanism (i.e., stimulation of non-ocular photoreceptors) to
development of the nervous system {i.e., specificity to develop-
mental neurotoxicity]. Moreover, questions remain as to
whether the embryonic PMR effects are related to neurcheha-
vioral toxicity pathways versus other undetected dysmorpho-
genesis pathways, or what may be more likely a combination of
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both neurclogical and physiological perturbations. Examining
chemicals and pharmaceuticals with understood mechanisms
and targets with differing potencies would prove beneficial in
understanding these relationships. With the large number of
transgenic lines, the zebrafish is uniquely suited to character-
ize how chemical classes and structural attributes target the
brain leading to impaired motor and cognitive behaviors.

in addition, the extent to which more recent zebrafish be-
havioral assays are comparable to mammalian neurobehavioral
methods and readouts continues to be a guestion that will
undoubtedly evolve as these test batteries are refined. For
instance, unlike rodent and primate behaviors, zebrafish beha-
viors have not been fully characterized, especially strain-related
differences, although progress is being made in defining and

250

cataloging zebrafish behavioral phenotypes. Another
ongoing challenge centers on interpretation and specificity,
particularly related to translating and anchoring behavioral
phenotypes in zebrafish to specific neurological targets.”***?
These issues also extend to translating behavioral phenotypes
measured in zebrafish exposed to chemicals to behavioral
responses and targets in higher vertebrates.”***>»*** There
has been work to describe the genes regulating Iocomotor be-
havior in larval and embryonic zebrafish.®” Ongoing chal-
lenges related to linking behavioral phenotypes to specific
brain pathologies and neurological mechanisms is not singu-
lar to zebrafish, but is relevant for all animals models that are
trying to understand how chemical exposures may impair or
cause maladaptive motor behaviors and impaired cognitive

functioning.

Conclusions

1t is clear that the zebrafish confers many advantages in tox-
icity testing that provide an opportunity to optimize safer
chemical design and screen the toxicity of the thousands of
chemicals already in use. The rapidly expanding variety of
genetic assays, HTS technologies, and behavioral test methods
that emiploy the zebrafish model allow scientists to character-
ize toxicity across multiple levels of biological organization. In
combination, it represents a potential data stream rich in
molecular, biochemical, functional, and behavioral infor-
mation that can be positioned for use in sustainable chemistry
efforts. The zebrafish as an in vive biosensor provides an
opportunity to posit basic questions about the biocactivity of
chemical structures early in product design and R&D to
discern physicochemical properties, such as  functional
groups, chemical classes, and chain-length that may confer
less or more activity. Though in vitro technologies have impor-
tant application in toxicity screens, the ability to position
zebrafish as a bridge between cell-based tools and other in vivo
maodels is an exceptional model attribute that allows for extra-
polation of data across physiological targets and vertebrate
taxa. The translational advantage of the zebrafish is aided by
its shared homology to human orthologs. Capitalizing on
these attributes, a number of promising HTS tools measuring
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bioactivity and behavioral responses are allowing for muore
automated and rapid ‘safety’ screens of thousands of chemi-
cals. This initial pass into the chemical space does not provide
a great deal of insight into underlying toxicity mechanisms,
but can be used to identify more sustainable chemistries. With
regard to toxicity mechanisms, though, the zebrafish is an
equally important model ({eg, transcriptome profiling,
genome editing) catalyzing the shift from empirical tests of
chemical effects on apical endpoints {e.g, deformities, survi-
val} to predicting effects on biologically conserved pathways.
These tools also provide increasingly meaningful opportunities
going forward to characterize the biological effects of chemical
mixtures, an area in great need of study. Moreover, these pre-
dictive-based approaches are leading to recognition of the inte-
grated connections between human and wildlife health and
that the conventional distinctions between human health and
ecological risk assessment may not necessarily apply. it is con-
ceivable that the zebrafish could eventually serve as a bridge in
future trends to integrate human health and ecological hazard
and risk characterizations of chemicals that will be of further
use in designing more benign chemicals.
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Basis for inclusion and scientific impact:

This large laboratory feeding study in fish examined the bioaccumulation, metabolism, and
thyroid disruption effects of decabromodiphenyl ether {DecaBDE). | designed this study as part of an
EPA STAR graduate fellowship that | was awarded to characterize the toxicokinetics and toxicological
modes of action (MOAs) of DecaBDE on the thyroid system of adult and developing fish (Noyes et al.
2011). This is one of the first studies (along with the Noyes et al. 2011 study in fish larvae) to describe
the bioavailability and metabolism of DecaBDE in concert with tissue-specific mechanisms leading to
thyroid disruption and potential effects on reproduction and development. We were able to predict a
debromination pathway in fish based on the suite of lower PBDEs measured in whole fish tissues.
Despite the relatively low bioavailability of DecaBDE measured, DecaBDE or its reductive metabolites
disrupted thyroid hormone (TH) signaling in adult male fish at multiple levels of the central
hypothalamic-pituitary-thyroid (HPT) axis and in peripheral tissues, including causing declines in plasma
concentrations of TH, disrupted deiodination of thyroxine (T4) in the brain and liver, and altered the
expression of several key genes involved in TH production, transport, and genomic signaling. The brain
appeared to be particularly sensitive to DecaBDE-induced hypothyroidism with no apparent tissue-
specific compensatory responses observed. The thyroid disruption observed in this study was consistent
with effects measured in developing fish of the same species, in which T4 metabolism was reduced,
along with substantial thyroid follicle hypertrophy (Noyes et al. 2011). In addition, developing fish
exposed to DecaBDE experienced profound liver histopathology presenting as vacuolated hepatocyte
nuclei that has been only rarely observed in xenobiotic-exposed animals.

The impact of both these studies has been far-reaching and gratifying. The Noyes et al. 2013
study was a core study used to affirm the risk analysis by the Norwegian EPA to support listing DecaBDE
under the Stockholm convention (https://www.informea.org/en/decision/decabromodiphenyl-ether). it

was the first study to employ new non-radioactive methods to measure TH concentrations in small
volumes of plasma and serum for which | led the development, validation, and publication (Noyes et al.
2013). | worked with Dr. Sean Lema, California Polytechnic University, to isolate and sequence partial
cDNA sequences for all three isoforms of the iodothyronine deiodinase enzymes (D1, D2, D3) in fathead
minnow. These sequences were the first to be identified in fathead minnow, and | submitted them to
NIH’s GenBank repository. | presented findings of the adult fish study at the international Flame
Retardant meeting in 2013 and was awarded the Ake Bergman/Bo Jansson Award for excellence in
presentations. | was also awarded the Hutzinger Award for student presentations at the 2010 Dioxin
meeting for my presentation of the Noyes et al. 2011 larval fish study. For both the adult and larval
studies, | built the aquatic system, maintained the fish colonies, conducted and managed the exposures,
dissections, serum extractions, and analytical measurements, undertook the molecular and toxicity
testing, prepared the manuscripts, and managed the journal peer review.
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ABSTBALT: Polybrominated diphenyl ether (PBDE) flame
retardants have been shown to disrupt thyroid hormone
regulation, neurodevelopment, and reproduction in some
animals. However, effects of the most heavily used PBDE,
decabromodiphenyl ether (BDE-209), on thyroid functioning
remain unclear. This study examined low-dose effects of BDE-
209 on thyroid hormone levels and signaling in fathead
minnows. Adult males received dietary exposures of BDE-209
at a low dose (~3 ng/g bw-day) and high dose (~300 ng/g
bw-day) for 28 days followed by a 14-day depuration to
evaluate recovery. Compared to controls, fish exposed to the
low dose for 28 days experienced a 53% and 46% decline in
circulating total thyroxine (TT4) and 3,5,3 -triiodothyronine
(TT3), respectively, while TT4 and TT3 deficits at the high

dose were 59% and 62%. Brain deiodinase activity (T4-ORD) was reduced by ~65% at both doses. BDE-209 elevated the relative
mRNA expression of genes encoding deiodinases, nuclear thyroid receptors, and mermbrane transporters in the brain and liver in
patterns that varied with time and dose, likely in compensation to hypothyroidism. Declines in the gonadal-somatic index (GSI)
and increased mortality were also measured. Effects at the low dose were consistent with the high dose, suggesting nonlinear
relationships between BDE-209 exposures and thyroid dysfunction.

B INTRODUCTION

The widespread use of the polybrominated diphenyl ether
(PBDE) flame retardant DecaBDE has resulted in rising levels
of decabromodiphenyl ether (BDE-209) in humans,' ™ wild
fish,*"® and other wildlife species.” ™ BDE-209 is detected
increasingly as the dominant PBDE in the atmosphere,
sediments, soils, and indoor dust.*'%!!
contamination serve as sources of PBDE exposure as BDE-209
can undergo photolytic degradation,'” microbial breakdown,"
and metabolic biotransformation®* to lower PBDE congeners.
While DecaBDE is scheduled for phase-out in the U.S. at the
end of 2013, exposures to BDE-209 and other PBDEs are
expected to continue into the coming decades as products that
contain them continue to be used, discarded, and recyded.
Previous studies have demonstrated that exposures to lower
PBDE congeners (e.g, BDE-47, BDE-99) can depress thyroid
hormone levels, alter thyroid hormone transport, or target

These reservoirs of

tissue response capacity, and elicit phenotypic impacts such as
neurodevelopmental impairments, among other adverse
effects.">™"® Despite the widespread use of BDE-209, however,
we continue to have limited information on its potential to
impair thyroid functioning. The thyroid system is substantially
conserved across vertebrates, and so increasing our knowledge

ACS Publications
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of BDE-209 effects on the fish thyroid can inform our
understanding of effects in other species.

This study used the fathead minnow as a model to evaluate
effects of low doses of BDE-209 on thyroid functioning and to
turther elucidate mechanisms of thyroid dysfunction. Two low
dose exposures of BDE-209 were selected: (1) a higher dose of
~10 ug/g ww of food targeted to reflect a BDE-209 exposure
possible from a more contaminated environment; and (2) a low
dose of ~95 ng/g ww food more characteristic of background
environmental levels of BDE-209.""7** The bioaccumulation of
BDE-209 and its reductive metabolites was measured along
with effects on circulating thyroid hormone levels, relative
iodothyronine deiodinase (Dio) activity and mRNA levels in
the brain and liver, and transcript abundances of genes
encoding thyroid hormone receptors (tra, trff) and several
membrane bound transporters from the monocarboxylate
transporter (mct) and organic anion transport protein (oatp)
families. Because a limited number of studies have shown
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Accepted:  July 30, 2013
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PBDE impacts on adult fish reproduction,”** the gonado-
somatic index (GSI) was measured as an initial metric of BDE-
209 effects on reproductive output.

B MATCRIALS AND METHODS

BDE-209 Dietary Exposures. Approximately 600 adult
male fathead minnows (Pimephales promelas; 9 months old;
Aquatic BioSystems, Fort Collins, CO) were distributed
randomly across twelve 150-L glass aquaria (~50 fish/tank)
and assigned to the following treatments: three BDE-209 high
dose tanks; three BDE-209 low dose tanks; three positive
control tanks; and three negative control tanks. Fish at the high
dose received dietary exposures (Omnivore Gel Diet; Aquatic
Ecosystem, Inc., Apopka, FL) of BDE-209 at 10.1 + 0.10 pg/g
wet weight (ww) of food at 3% bw/day (or ~300 ng/g bw-
day). Fish at the low dose were exposed to BDE-209 at 95.3 +
0.41 ng/g ww of food at 3% bw/day (or ~3 ng/g bw-day). All
PBDE concentrations in food were confirmed using mass
spectrometry as outlined in the extraction methods below. The
model antithyroid drug 6-propyl-2-thiouricil (PTU) was used
as a positive control at 0.5 mg/g ww of food at 3% bw/day (or
~15 ug/g bw-day). BDE-209 (97% purity) and PTU were
purchased from Sigma-Aldrich (St Louis, MO). Negative
control fish received clean food containing cod liver oil vehicle
with no BDE-209. Fish were exposed to BDE-209 and control
treatments daily for 28 days followed by a 14-day depuration in
which fish received clean food containing no test chemical. Fish
were euthanized using MS-222 on days 0, 14, 28, and 42 (8—12
fish sampled/tank-sample day). Whole livers, brains, gonads,
and plasma were dissected from all fish and preserved at —80
°C for further testing. Fish carcasses were also preserved at —80
°C for PBDE analysis. The sampling and tissue pooling
regimen is summarized in the Supporting Information (SI;
Table S1) as are the water quality conditions maintained during
the study.

PBDE Extractions/Analysis. One fish carcass (dissected of
visceral mass, brain, gonad, and plasma) was randomly selected
for PBDE analysis across each BDE-209 treatment and control
group replicate (n = 3) on each sampling day. Food (BDE-209
amended and control) and fish carcasses were analyzed for a
suite of 32 PBDE congeners using gas chromatography mass
spectrometry operated in electron capture negative ionization
mode (GC/ECNI-MS). The PBDE analytical methods are
summarized in the Supporting Information and have been
described previously.”> In addition, the Supporting Informa-
tion (Table S2) repoits levels of PBDEs in the BDE-209
amended and contro] diets.

Plasma T4 and T3 Measurements. Circulating total T4
and T3 (TT4 and TT3, respectively) were measured using a
newly developed extraction method”” and liquid chromatog-
raphy tandem mass spectrometry (LC/MS/MS).*® Blood was
drawn from the caudal vein of euthanized fish using heparin-
coated 75 mm capillary tubes, and centrifuged at 3000 xG for 5
min to isolate plasma fractions. Plasma was pooled from fish (n
= 3; 8—12 fish/replicate). Isotopically labeled hormones, *C,,-
T4 and ®C4T3 (50 ul; 10 ng/ml; Cambridge Isotope
Laboratories, Andover, MA; Accustandard, New Haven, CT),
were used as internal standards to quantify levels of TT4 and
TT3, respectively. Blank controls (deionized water) were
extracted alongside samples and were used to correct for trace
levels (~0.5%) of unlabeled hormones present as commercial
impurities in the labeled standards. Method detection limits

(MDLs) and intra/inter-assay %CVs are provided in the
Supporting Information.

Deiodinase Activity Assays. Brain and liver microsomes
were prepared using previously published methods™* by
pooling tissues from six fish per replicate (n = 3; six organs/
replicate). Microsomes (1 mg protein) were incubated with
0.64 uM of T4, and formation rates of T3, T3, and 3,3'-
diiodothyronine (T2) catalyzed by Dio enzymes were
measured by LC/MS/MS using our previously published
methods®® All incubations contained 900 uL of 0.1 M
potassium phosphate buffer (pH 7.4), 10 mM of dithiothreitol
(DTT; Sigma-Aldrich), and 100 uL of the appropriate
microsomal fraction diluted to 10 mg/mL. Incubations were
undertaken for 1.5 h in a water bath at 25 °C. Negative controls
consisted of microsomes incubated with no T4. Labeled
internal standards *C,,-T4, *Ce1T3, ¥C,-T3, and 3C,-3,3'-
T2 (100 pL; 250 ng/mL) were added to each sample to
quantify levels of T4, T3, T3, and 3,3'-T2, respectively.
Concentrations of thyroid hormones were normalized to time
and protein concentration to determine deiodination rates.
Blank controls containing buffer alone were used to correct for
trace levels (~0.5%) of unlabeled hormones present as
commercial impurities in the internal standards. MDLs are
provided in the Supporting Information.

Quantitative Real-Time Reverse-Transcribed PCR.
Genes encoding the following proteins were targeted for
quantitative real-time PCR analysis of brain and liver tissues at
each sampling day (n = 6; mean + SE): Dio enzymes [dio!
(GenBank accession no. KF042854), dic2 (KF042855), dio3
(KF042856)]; thyroid hormone receptors [fra (DQO74645);
trf (AY533142)]; MCTs [mct8 (KF053157), mctl0
(KF053158)], and OATPs [oatplcl (KF053149), oatplfl
(KF053150), oatplf2 (KF053151), oatp2al (KF053152),
oatp2bl (KF053153), oatp3al (KF053154), oatpdal
(KF053155), oatpSal (KF053156)]. Total RNA was extracted
from livers and brains of treated and control fish from each
sampling day and reverse transcribed to cDNAs using methods
summarized in the Supporting Information. Primers and
hydrolysis (Tagman) probes were designed to partial cDNA
encoding each targeted gene and three reference genes (f-actin
torm 1, f-actin-1; ribosomal protein 18, rpl8; and elongation
factorla, efla) (SI, Tables S5—S6). A standard curve of serially
diluted total RNA (range: 0.049—75.0 ng/uL) from samples
representing all treatments and sample days was assayed in
triplicate, while half of samples were assayed in duplicate or
individually. DNA contamination was assessed for each gene by
analyzing samples that were not reverse-transcribed; no
amplification was observed. f-actin-1 and rpl8 were selected
as reference genes in the liver and brain, respectively, as neither
BDE-209 nor PTU affected their expression. Correlation
coefficients (R*) for standard curves of each gene ranged
from 0.98 to 1.00. PCR efficiencies are provided in the
Supporting Information (Tables S5—S6) and were calculated
using the equation: efficiency = [100/0pe) 1131 Relative
levels of mRNA were calculated for each gene using standard
curves and were expressed relative to mRNA levels of the
reference gene.”> Data are presented as values normalized to
the negative control at each sample day.

Gonado-Somatic Index (GS!). GSI values for a given
replicate tank were derived using published methods® and by
taking the average GSI of 8—12 fish per replicate on each
sampling day.

dx.doi.org/10.1021/es402650x | Environ. Sci. Technol. 2013, 47, 1001210021
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Statistical Analyses. For the plasma thyroid hormone
analysis, the average measurement from three separate
extractions was used at each replicate across treatment and
sampling day. Differences in circulating thyroid hormone levels
were analyzed for statistical significance within sampling day
using a one-way ANOVA and Tukey’s test (Graphpad Prism
6.0, La Jolla, CA). For Dio activity, differences in thyroid
hormone formation rates in T4-incubated microsomes were
analyzed within sampling day with a one-way ANOVA and
Tukey's test. Changes in gene expression and GSIs in treated
and control fish were also evaluated within sampling day using a
one-way ANOVA and Tukey’s test. For mortality, survival
curves were analyzed using a log-rank test; statistical
significance was established using a Bonferroni correction for
multiple survival curve comparisons. Statistical significance was
defined at the p < 0.05 level.

B RESULTS

Bicaccumulation/Metabolism. Accumulations of BDE-
209 and several metabolites, ranging from penta- to octa-BDEs,
were measured in both dose groups (SI, Table S7). In the low
dose, BDE-209 concentrations increased to 1.4 & 0.5 ng/g bw
at sampling day 14 and then remained relatively stable with
concentrations measured at 1.1 & 0.2 ng/g bw (100 + 14 ng/g
Iw) at sampling day 28 and 1.0 + 0.2 ng/g bw after the 14 day
depuration. In high dose fish, BDE-209 concentrations
increased from 6.1 & 1.0 ng/g bw at day 14 to 10 + 54 ng/
g bw (2700 + 1200 ng/g lw) at day 28 after which levels
decreased to 3.1 = 1.0 ng/g bw over the depuration period.
BDE-154 (2,2',4,4',5,6"-hexaBDE) was the debrominated
metabolite detected at the highest concentration after 28 days
in both dose groups (1.5+01 ng/g bwand 51 x 7.3 ng/g bw
in the low and high dose, respectively), and BDE-101
(2,2',4,5,5 -pentaBDE) was the lowest molecular weight
congener detected (<0.5 ng/g bw and 6.3 + 0.9 ng/g bw in
the Iow and high dose, respectively).

Plasma Thyroid Hormones. BDE-209 reduced circulating
TT4 and TT3 at both doses tested over the 28-day exposure
(Figure 1). By day 14, TT3 and TT4 concentrations in the low
dose group were significantly reduced by $3 + 4.1% (1.71 +
0.26 ng/mL; p < 0.05) and 57 + 6.2% (1.41 % 0.35 ng/mL; p <
0.01), respectively, compared to negative controls (TT3 = 3.67
+ 0.77 ng/mL; TT4 = 327 + 0.41 ng/mL). At day 28, TT3
and TT4 levels in low dose fish continued to be significantly
depressed by 46 + 3.7% (1.62 + 0.19 ng/mL; p < 0.05) and 53
+ 3.6% (1.77 + 0.23 ng/mL; p < 0.01), respectively, compared
to negative controls (TT3 =298 +0.25 ng/ml; TT4 =373 %
0.35 ng/mL). Over the 14-day depuration, circulating levels of
thyroid hormones in low dose fish remained depressed with
TT3 reduced 46 + 3.7% (1.62 + 0.19 ng/mL; p < 0.05) and
TT4 reduced 52 + 2.8% (1.42 + 0.14 ng/mL; p < 0.01).

At the high dose, significant (p < 0.01) dedlines in plasma
TT3 (62 + 8.2%; 1.13 + 043 ng/mL) and TT4 (59 + 11%;
1.55 + 0.73 ng/mlL) were measured after the 28-day exposure
relative to negative controls (TT3 = 298 + 0.25 ng/mL; TT4
= 3.73 + 0.35 ng/mL). Over the 14-day depuration, TT3 levels
recovered at the high dose, but further reductions in TT4 of 66
+ 3.0% (099 + 0.15 ng/mL) were measured. In the PTU
positive control, significant (p < 0.005) deficits in TT3 (50 £
10%; 1.49 + 0.50 ng/mL) and TT4 (52 + 10%; 1.81 + 0.63)
were measured at sampling day 28 relative to negative controls.
After the 14-day depuration, circulating TT3 levels returned to
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Figure 1. Plasma levels of (A) total T3 and (B) total T4 in adult male
fathead minnows exposed to a BDE-209 low dose (95 + 04 ng/g
food) and high dose (10 & 0.1 ug/g food) at 3% bw/day for 28 days
followed by a 14-day depuration (n = 3; mean + SE; 8—12 fish/
replicate). The model antithyroid agent 6-propyl-2-thiouricil (PTU)
was used as a positive control (0.5 mg/g food). Data analyzed within
sampling day with a one-way ANOVA and Tukey’s test with statistical
significance measured at the *p < 0.05, **p < 0.01, **¥p < 0.00S.

normal among PTU-treated fish but TT4 continued to be
reduced by 59 £ 10% (1.21 % 0.49 ng/mL).

Deiodinase Activity/mRNA Levels. By sampling day 14,
the rate of T4-ORD in the brain (Figure 2A) was reduced by 49
+ 15% (1.37 + 0.39 pmol T3/h-mg protein), 46 + 12% (1.44
=+ 0.32 pmol T3/h-mg protein), and 44 + 11% (1.51 + 0.29
pmol T3/h-mg protein) in BDE-209 low dose, high dose, and
positive control fish, respectively, compared to negative
controls (2.69 £ 0.19 pmol T3/h-mg protein). By day 28,
T4-ORD in the brain had declined further by 65 & 6.9% and 66
+ 5.0% (p < 0.005) at the low dose (1.03 & 0.26 pmol T3/h-
mg protein) and high dose (1.04 + 0.36 pmol T3/h-mg
protein), respectively, compared to negative controls (2.99 +
0.43 pmol T3/h-mg protein). T4-ORD was also substantially
depressed by 74 + 4.3% (0.76 & 0.22 pmol T3/h-mg protein; p
< 0.005) in the PTU positive control at day 28. After the
depuration, T4-ORD in brains of BDE-209 and PTU exposed
fish returned to negative control levels.

In liver microsomes at sampling day 14 (Figure 2B), T4-
ORD increased by 56 + 7.0% (6.93 £ 0.31 pmol T3/h-mg
protein; p < 0.05) at the low dose and by 81 + 16% (8.08 +
0.73 pmol T3/h-mg protein; p < 0.05) at the high dose
compared to negative controls (4.46 + 0.22 pmol T3/h-mg
protein). In a reversal, at day 28, the rate of T4-ORD in the
liver significantly declined by 29 & 3.3% (3.90 # 0.32 pmol T3/
h-mg protein; p < 0.01) at the low dose and by 42 + 5.6% (3.20
+ 0.53 pmol T3/h-mg protein; p < 0.005) at the high dose
relative to negative controls (5.52 + 043 pmol T3/h-mg
protein). Similar to the BDE-209 high dose, rates of T4-ORD
in PTU positive control fish also declined by 41 + 5.1% (327 +
0.49 pmol T3/h-mg protein; p < 0.005) at day 28. After the
depuration, liver T4-ORD in treated animals was not
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Figure 2. T4-outer ring deiodination in (A) brains and (B) livers of
adult male fathead minnows exposed to a BDE-209 low dose (95 + 0.4
ng/g food) and high dose (10 + 0.1 4Hg/g food) at 3% bw/day for 28
days followed by a 14-day depuration (n = 3; mean + SE; 6 organs/
replicate). The model anti-thyroid agent 6-propyl-2-thiouricil (PTU)
was used as a positive control (0.5 mg/g food). Data analyzed within
sampling day with a one-way ANOVA and Tukey’s test with statistical
significance measured at the *p < 0.05, ¥*p < 0.01, ***p < 0.008. Note
difference in y-axis scales.

significantly elevated from negative controls. No significant
changes in T4-inner ring deiodination (IRD) and 3,3'-T2
production (T3-IRD/rT3-ORD) were detected.

At day 14 in BDE-209 high dose fish (Figure 3), relative dio2
mRNA levels were significantly elevated 12 times in the brain

and 4.1 times in the liver compared to mRNA levels in negative
controls (p < 0.05). In the low dose at day 14, relative dio2
mRNA levels were significantly (p < 0.01) elevated 5.3 times in
the liver and 4.9 times in the brain compared to negative
controls. By day 28, dio2 transcript levels in treated fish had
returned to negative control levels, but relative diol transcripts
levels in the brain were significantly (p < 0.05) increased 4.3
times (high dose) and 3.8 times (low dose) that of negative
controls. In addition, after the depuration, relative diol and dio2
transcripts were significantly (p < 0.05) increased 2.9 times that
of negative controls in livers of BDE-209 low dose fish. PTU
had no effect on dio transcription, and no significant changes in
dio3 mRNA levels were detected (SI, Figure S7).

Thyroid Hormone Receptor mRNA Expression. Rela-
tive brain fra mRNA levels were 2.3 times greater in BDE-209
high dose fish relative to negative controls on day 14 (p <
0.005) and day 28 (p < 0.01) of the exposure (Figure 3C).
Moreover, BDE-209 caused a significant (p < 0.05) increase in
relative fra mRNA abundance in brains of low dose fish at the
depuration. Transcription of #/f in the brain was not affected by
BDE-209 (SI, Figure S7). However, in livers of the BDE-209
low dose and PTU positive control, trf transcripts significantly
(p < 0.05) increased to three times that of negative controls
(Figure 3F). Transcripts for trff also significantly (p < 0.05)
declined at sampling day 28 in livers of BDE-209 high dose fish.

Membrane-Bound Transporter mRNA Expression. At
sampling day 14, relative brain mct8 mRNA levels were about
three times higher (p < 0.001) in the BDE-209 high dose and
twice as high (p < 0.05) in the BDE-209 low dose and PTU fish
than in negative controls (Figure 4AB). Brain mct8 tran-
scription returned to negative control levels at sampling day 28,
but was again significantly (p < 0.01) elevated about twice that
of negative controls after the depuration. Relative liver mct8
transcript levels were also significantly (p < 0.05) elevated in
BDE-209 low dose fish at sampling day 14. No significant
changes in mctI0 transcription were observed (SI, Figure S7).
Of the oatp isoforms tested, only oatplcl transcription (liver
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Figure 3. Relative mRNA expression of deiodinases {diol, dio2) and thyroid receptors (tra, trff) in brains and livers of adult male fathead minnows
exposed to a BDE-209 low dose (95 + 0.4 ng/g food) and high dose (10 + 0.1 ug/g food) at 3% bw/day for 28 days followed by a 14-day
depuration (n = 6; mean + SE). The model antithyroid agent 6-propyl-2-thiouricil (PTU) was nsed as a positive control (0.5 mg/g food). Statistical
significance evaluated within sampling day with one-way ANOVA and Tukey’s test (*p < 0.05, *¥*p < 0.01, **¥p < 0.005).
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Figure 4. Relative mRNA expression of monocarboxylate transporter
(mct8) and organic anion transport protein (oatplcl) in brains and
livers of adult male fathead minnows exposed to a BDE-209 low dose
(95 + 0.4 ng/g food) and high dose (16 + 0.1 Hg/g food) at 3% bw/
day for 28 days followed by a 14-day depuration (n = 6; mean =+ SE).
The model anti-thyroid agent 6-propyl-2-thiouricil (PTU) was used as
a positive control 0.5 mg/g food). Statistical significance evaluated
within sampling day with a one-way ANOVA and Tukey's test (*p <
0.05, *#p < 0.01, *¥¥p < 0.005).

only; Figure 4C,D) and oatp2al (brain and liver; S, Figure S8)
were significantly affected by BDE-209 exposures. Relative
levels of oatplcl increased (p < 0.05) about seven times that of
negative controls in livers of both BDE-209 low and high dose
fish. In addition, relative oatpIcl mRNA levels in PTU treated
fish were elevated 12 times that of the negative controls.
Abundances for all other oatp transcripts tested are provided in
the Supporting Information (Figure S8).

Mortality. A statistically significant increase in percent
cumulative mortality was measured among both BDE-209
doses. Specifically, 13 + 3.1% and 12 + 2.9% of fish from the
high and low BDE-209 treatments, respectively, died by the
conclusion of the study. We observed <1% mortality in negative
controls. Mortality in the PTU positive control group was
increased (5.4 & 2.2%) but was not statistically significant. No
significant changes in fish mass, fork length, or condition factor
(i.e., fish mass (g)/fork length (cm) X 100) were measured.

Gonado-Somatic Index. Significant declines in the GSI
were measured in adult male minnows exposed to BDE-209 at
all sampling time points after day 0, including after the
depuration (Figure 5). At day 14, the GSI declined 42 + 13%
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Figure 5. Gonado-somatic index (GSI) measured in adult male
fathead exposed to a BDE-209 low dose (95 + 04 ng/g food) and
high dose (10 + 0.1 ug/g food) at 3% bw/day for 28 days followed by
a 14-day depuration minnows (n = 3; mean + SE; 8—12 fish/
replicate). The model antithyroid agent 6-propyl-2-thiouricil (PTU)
was used as a positive control {0.5 mg/g food). Statistical significance
evaluated within sampling day with a one-way ANOVA and Tukey's
test (*p < 0.01, ¥¥p < 0.01, ¥*¥p < 0.005).

(p < 0.01) at the low dose and 25 + 9.3% (p < 0.05) at the
BDE-209 high dose, relative to negative controls. This
significantly reduced GSI continued through the end of the
28-day exposure (decline of 23 + 4.9% at low dose; 31 + 3.8%
at high dose) and extended through the depuration period
(decline of 28 % 15% at low dose; 33 + 7.0% at high dose).
PTU had no effect on the GSL

B DsCUSSION

Bioaccumulation/Metabolism. The BDE-209 bioaccu-
mulation measured here at the low dose (100 + 14 ng/g Iw)
and high dose (2700 =+ 1200 ng/g lw) is consistent with levels
measured in human serum,'™***% wild fish, and other wild
species4_6’9’36 (SI, Table S8). Penta- to octaBDE debrominated
metabolites measured in adult minnows were identical to
metabolites detected in juvenile fathead minnows exposed to
BDE-209.>° Based on the metabolites detected, a pathway of
sequential reductive debromination can be proposed (SI, Figure
S2) that supports our previous observations of preferential
debromination by cleavage of bromine from meta-substituted
positions.l/‘l’z‘s’37

Reduced Plasma Thyroid Hormones. The significant
deficits in circulating thyroid hormones after the 28-day
exposure were consistent with reductions induced by the
PTU positive control. PTU is a model anti-thyroid drug that
acts primarily at the central hypothalamic-pituitary-thyroid
(HPT) axis to reduce T4 by inhibiting thyroid peroxidase
iodination of tyrosine residues in thyroglobulin in thyroid
follicles. While this is the first study to examine BDE-209 effects
on circulating thyroid hormone levels in adult fish, data here are
consistent with studies showing that PBDEs, including BDE-
209, can elicit reductions in plasma thyroid hormone levels in
other species at various life-stages.”*™*!

dx.doi.org/10.1021/es402650x | Environ. Sci. Technol. 2013, 47, 1001210021

ED_002435_00006144-00061



Environmental Sclence & Technology

Altered Deiodinase Activity and mRNA Levels. The
highly altered brain T4-ORD in adult minnows suggests that
thyroid regulation in the brain may be particularly sensitive to
BDE-209. T4-ORD reductions in brain microsomes of adult
minnows (65 + 6.9%; Figure 2A) were consistent with declines
in T4-ORD (~74%) measured in juvenile fathead minnows
receiving equivalent dietary treatments.”> In contrast to the
brain, an increase in T4-ORD was measured in the liver at day
14. This dichotomy suggests tissue-specific differences in
regulatory responses to systemic thyroid hormone reductions
caused by BDE-209. The elevated T4-ORD in the liver may be
attributable to a compensatory response of this tissue to
reductions in circulating thyroid hormones. Alternatively,
reductions in Dio activity in brain microsomes of treated fish
may demonstrate the inability of the brain to compensate
locally to depressed levels of hormone. By day 28, T4-ORD was
significantly reduced in both the brain and liver, suggesting that
any compensatory responses were transient.

BDE-209 effects on T4-ORD were consistent with effects
measured in the PTU positive control. In addition to mediating
thyroid hormone production at the central HPT, PTU acts in
mammalian peripheral tissue by inhibiting Diol and is therefore
an effective compound to delineate relative Dio activity
profiles.** However, in fishes, PTU effects on peripheral Dio
activity are less clear with some studies su§gesting that Diol in
some species may be resistant to PTU.**** Unlike in BDE-209
treated fish, the PTU positive control treatment had no effect
on diol mRNA expression in the brain or liver, suggesting that
its effects on minnows were mediated at the central HPT rather
than by inhibiting Diol, while BDE-209 effects appear to be
mediated both centrally and in peripheral tissues.

The transient upregulation of diol and dio2 in response to
BDE-209 provides evidence of localized responses of peripheral
liver and brain tissues to depressed plasma thyroid hormones.
In vertebrates, Diol and Dio2 catalyze the T4-ORD pathway to
produce the genomically active T3 hormone. This study is one
of only a few that has targeted PBDE-induced changes in
relative abundances of dio mRNA transcription. Consistent
with our findings, the relative mRINA expression of diol and
dio2 was increased in zebrafish larvae exposed aqueously to
BDE-209" and the commercial PentaBDE mixtare.'® An
increase in dio2 transcripts was also measured in livers of larval
Chinese rare minnow (Gobiocypris rarus) exposed aqueously to
BDE-209, although in contrast to our results, a decrease in dio2
transcripts was reported in brains of adult rare minnows."”
Finally, the elevated diol and dio2 mRNA levels in BDE-209
exposed minnows were consistent with studies in which
methimazole-induced hypothyroidism increased, while exoge-
nous thyroid hormone decreased, relative diol and dio2 mRNA
levels in livers and brains of fishes.** ™" Thus, transcriptional
regulation of Dios appears to be an important compensatory
pathway in teleost responses to BDE-209 and pharmacologi-
cally induced hypothyroidism.

Compensatory Responses to BDE-209. The functional
and biochemical properties of Dios can provide insights into
measured differences in apparent compensatory responses of
upregulated dic mRNA expression in BDE-209 exposed
minnows. In particular, Dio2 has demonstrated substantial
physiological plasticity in vertebrates, making it a sensitive
regulator of T4-ORD and intracellular T3 homeostasis. It has
been shown to be highly sensitive to thyroid hormone with a
short half-life in mammals of ~40 min.’> The early
upregulation of dio2 mRNA expression measured at day 14 in

livers and brains of BDE-209 treated fish may be attributable to
the rapid homeostatic behavior of Dio2 in response to
depressed plasma thyroid hormones. Notably, T4-ORD activity
was not increased in brains of BDE-209 treated fish, suggesting
that this transcriptional response did not translate to a
detectable increase in Dio activity in the adult male minnow
brain, although protein levels were not measured.

The absence of a response of brain Dio activity may in part
be related to tissue differences in Dio expression. Absolute
levels of dio2 transcript were six times lower in the brain than
liver of adult minnows, suggesting that Dio2 activity may
likewise be low. Farly studies have raised questions about
whether dio2 is expressed in brains of piscivores, as only
negligible T4-ORD activity has been measured in the fish
brain.>*** In accordance with our results, more recent studies
using quantitative PCR techniques have localized dio2 tran-
scripts to the fish brain.*”*** Limited evidence also suggests
that the transcriptional response of dio2 in the brain may be
more sensitive to systemic thyroid hormone changes than dio2
in the liver.” Although not known at this time, dio2
transcriptional responses to BDE-209 may vary with tissue
type and could be linked to divergent functional roles of Dio2
in these tissues or to differences in sensitivity to T3.

It is also possible that compensation to prolonged thyroid
hormone depression might vary or be more efficient in some
tissues than others. The upregulation of diol transcription in
the minnow brain at day 28 appears indicative of such
regulatory variation under longer periods of hypothyroidism.
For instance, no change in relative dio] mRNA abundance was
observed in brains or livers of parrotfish subjected to
experimentally elevated T3 or depressed T4 (by methimazole)
for three days."” In contrast, dio] mRNA transcripts became
elevated in two species of tilapia after a 90-day methimazole
treatment.>’ Irrespective of the mechanism, compensatory
responses of enzymes involved in peripheral thyroid hormone
metabolism appear to change over time as BDE-209 exposures
continue chronically.

Thyroid Receptors. BDE-209 affected the relative
expression of fr transcripts in a tissue-specific manner (Figure
3C,F). Two genetically distinct nuclear receptors TRa and TRf
have been identified in fathead minnows with additional
subtypes characterized in teleosts.”” ™ Similar to results here,
BDE-209 increased tror and trff mRNA expression in zebrafish
larvae.*® Aqueous exposures to the commercial PentaBDE
mixture, in contrast, had no effect on relative #r mRNA
abundance in zebrafish larvae*® However, thyroid receptor
expressional regulation by both thyroid hormones and
endocrine disrupting chemicals can vary with fish Ilife-
stage.>” "% The only other study to date that has examined
PBDE impacts on tr gene expression in adult fish was
conducted with BDE-47.> In this study, tra transcripts were
elevated significantly (p < 0.005) in brains of female, but not
male, fathead minnows exposed to BDE-47, while tf
transcripts were depressed (p < 0.05) in brains of both sexes.
Thus, in addition to age-related influences, there appear to be
congener-specific differences in PBDE effects on thyroid
receptor expression patterns.

The elevated relative tr mRNA levels measured in BDE-209
and PTU dosed fish also reveals an apparent contradiction with
studies in hyperthyroid fish. Specifically, an increase in relative
trac and trf transcript levels has been measured in brains and
livers of adult fathead minnows treated with T3.** TRs
themselves contain thyroid response elements and #r tran-
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scription can be autoinduced by T3.°*%" Based on the ability of

T3 to induce transcription of its own receptors, a decrease in tr
mRNA expression might be predicted in BDE-209 and PTU
treated fish given the hypothyroidism observed. However,
thyroid hormone regulation of TRs appears to be condition
dependent. Both hypothyroidism (by thyroidectomy) and
hyperthyroidism (T3-induced) have been shown to increase
TR expression in the adult rat brain.” Other evidence suggests
that #r transcription can vary within the same tissue® and over
time as observed in rat brain cell cultures dosed with BDE-99.%*
Thus, our findings of BDE-209 induced elevations in tra
mRNA abundance in the adult minnow brain at day 14 with
altered trff mRNA transcription in the liver might indicate
alternative mechanisms of peripheral responses to BDE-209
(and PTU) that have yet to be fully described.

Membrane Bound Transporters. This study is the first to
detect impacts of PBDEs on the expression of plasma
membrane transporters of thyroid hormones in fish. In both
fish and mammals, mct8 has been structurally and functionally
characterized as a specific and active transporter of T4 and
T3.5% OATPs mediate the cellular uptake of a range of
amphipathic organic molecules, including thyroid hormones
and xenobiotics. In humans, OATP1C1 has been found to have
relatively narrow substrate specificity with a high affinity for
transporting T4 (K, = 90 nM) and 1T3 (K, = 130 nM).67 In
fishes, however, the diversity of OATPs has only recently been
explored in zebrafish®® and fathead minnows.”” The observed
increases in mct8 and oatplcl transcript levels in BDE-209
exposed minnows may be characteristic of an upregulation in
the expression of these transporters to compensate for the
reduced availability of circulating thyroid hormones. This idea
is supported by recent findings that T3-treated (hyperthyroid)
adult male fathead minnows exhibited reduced mct8 and
oatplcl mRNA levels in the brain and liver.” Neither BDE-209
nor PTU increased brain oatplcl mRNA transcripts, despite
the substantial hypothyroid status of these fish and the known
localization of catplcl to the fathead minnow brain, ultimately
raising further questions about the capacity of the fish brain to
maintain homeostasis in cellular thyroid hormone levels under
conditions of BDE-209 induced hypothyroidism.

Mechanisms of Thyroid Disruption. Biological effects of
BDE-209 on thyroid hormone signaling in the adult minnow
proceeded through multiple pathways that involved: declines in
circulating thyroid hormones; disrupted T4-ORD in peripheral
brain and liver tissues; and altered transcription of genes
involved in thyroid hormone production, transport, and
genomic signaling. Fish exposed to BDE-209 at both the low
and high dose experienced profound deficits in plasma T4 and
T3 as well as reduced T4-ORD activity in the liver and brain
after a 28-day exposure. While T4-ORD activity recovered after
the depuration, circulating T4 (both doses) and T3 (low dose
only) remained depressed for at least 14 days after the BDE-
209 exposure ceased. Brains of adult minnows appeared
particularly sensitive to BDE-209 based on the severely reduced
T4-ORD measured in these tissues after 28 days of BDE-209
exposure. Several genes encoding proteins with key functions in
thyroid signaling, including diol, dio2, tra, trf}, mct8, and
oatplcl showed increased expression in BDE-209 exposed fish,
although these increases appeared to be transient, compensa-
tory responses to BDE-209 induced hypothyroidism.

Mortality. The increased mortality in this study is not a
commonly evaluated end point for PBDEs and has not been
observed in previous in vivo fish studies conducted in our

70

Iaboratory.25 However, consistent with our results, a
significant increase in mortality (~44%) was measured in
adult zebrafish exposed to 1-uM concentrations of BDE-209 for
five months, although mortality was also elevated in negative
controls (~38%).”' Fathead minnow adult males exposed to
BDE-47 by the diet have likewise shown reduced body
condition factors and erratic swimming behaviors, although
declines in survival were not reported.”* No significant changes
in body condition were detected in the present study,
suggesting that body wasting was not occurring. It is notable,
however, that minnows exposed to both doses of BDE-209
displayed greater frequencies of aggressive/territorial behaviors
(e.g, fighting, chasing, head-butting) than did negative control
and PTU-exposed fish. Thus, while unanticipated, it is possible
that BDE-209 mediated shifts in behavior that could have
indirectly contributed to increased mortality by increasing
physiological stress from social interactions.

Reduced GSI. Few studies to date have evaluated BDE-209
effects on fish reproduction. Consistent with results here, BDE-
209 studies in zebrafish have reported altered expression of
spermatogenesis genes' and decreased GSIs with reduced
sperm counts.”" Adult fathead minnows exposed orally to BDE-
47 have also been shown to have decreased mature
spermatozoa®** and reduced spawning due to male
infertility.”* Studies in young laboratory rodents have also
shown that PBDEs can elicit anti-androgenic effects that impair
reproductive development.”>”"* It is notable that in the current
study PTU had no effect on the GSI even though thyroid
hormones have been shown to influence reproductive
functioning.”>~"” This difference suggests that BDE-209 may
be impacting adult male reproduction by nonthyroidal
mechanisms of action.

Low Dose Effects. The BDE-209 low dose (~3 ng/g bw-
day) elicited impacts on thyroid signaling and reductions in the
GSI at similar levels to the high dose (~300 ng/g bw-day).
Doses tested in this study were generally less than those
administered in rodent studies conducted to date with BDE-
209.%*7* Further study is needed to determine whether non-
monotonic dose—responses are occurring in fish exposed to
BDE-209 as have been detected with other endocrine
disraptors.”® In addition, identification of the congeners driving
the thyroid disruption and reduced GSI (ie. parent BDE-209
and/or its metabolites) was beyond the scope of this study but
merits further investigation. The thyroid system is well-
conserved across vertebrate taxa, and our findings that BDE-
209 exposure at low doses can impact thyroid hormone
homeostasis and signaling at several levels point to a need to
turther evaluate the potential for BDE-209 induced thyroid
dysfunction in humans and wildlife.
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Basis for inclusion and scientific impact:

This paper updated the state-of-the-science on the biological effects and toxicity mechanisms of
the PBDE flame retardant chemicals, which despite their use restrictions and phase-out in many
countries, continue to be pervasive in humans and the global environment. | was the co-lead on this
paper with my PhD advisor, Dr. Heather Stapleton, Duke University, who is a leading environmental
chemist in the field and has published some of the foundational studies describing levels, metabolism,
and effects of flame retardants in people and wildlife. | wrote the paper and conducted all associated
analyses, including the extensive literature survey that was undertaken; Dr. Stapleton reviewed the
paper and provided a number of useful comments and text edits. The review updated the evidence for
PBDE toxicokinetics and toxicity mechanisms in teleosts, leading to perturbations to the thyroid axis and
impairments in development and reproductive functioning. It is a unique assessment in that it was
written with an eye toward evidence of mammalian toxicokinetics of the PBDEs, and their associated
effects on human health. It included extensive analysis of the similarities and differences in PBDE
metabolism and toxicological effects observed in mammals and teleosts given, for example, the high
level of evolutionary conservation of the vertebrate thyroid system and how this translates to common
molecular targets and biological responses. | conducted an in-depth analysis of the leading toxicological
modes of action of PBDEs on the vertebrate thyroid system, and evidence of associated adverse
outcomes on early development. Another important contribution of this review was that it is one of the
first reviews to examine and synthesize the evidence for PBDE effects on reproduction. It also remains
one of the only reviews to examine the interactive links and role of thyroid axis perturbations on the
estrogen and androgen pathways. Though the journal Endocrine Disruptors was only established in
2013, to date, this is the fourth most cited article in the journal and the fifth most read and downloaded
at over 890 times.
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REVIEW

Toxicokinetics and thyroid hormone endocrine disruption
in fish

Pamela D Noyes' and Heather M Stapleton?*

'Department of Environmental and Molecular Toxicology; Oregon State University; Corvallis, OR LSA; *Nicholas School of the Environment; Duke University; Durham, NCUSA

Keywords: endocrine disruption, feminization, flame rerardant, neurodevelopment, neurotoxicity, polybrominated diphenyl ether,

reproduction, thyroid hormone, thyroxine, thyroid recepror

Polvbrominated diphenyl sthers (PBDEs) are a class of bro-
minated flame retardant chemicals that have been used in
large guantities and are now detected worldwide in humans
and wildlife. To complement reviews of effects on human
health, this review discusses and synthesizes current evidence
of PBDE toxicokinetics and toxicity mechanisms leading to
nerturbations of thyroid hormone homeostasis in fish. PBDE
disruptions to thyroid signaling in fish appsar to procesd
through multiple pathways involving declines in circulating
thyroid hormones, disrupted deiodination activity, hindered
hormone transport, and altered transeriptional regulation of
genes invelved in thyrold hormone production, transpert, and
genomic signaling. PBDE exposures have also been linked to
impacts on reproductive health with reductions in fecundity,
spawning, hatching success, and offspring survival observed
in some species, as well as impaired fertility, These studies on
PBDE mediated hormone distuption in fish can help inform
future studies seeking to understand potential developmental
effectsin humans.

Introduction

Polybrominated dipheny! ethers (PBDEs) are a class of bro-
minated flame retardant (BFR) chemicals that have been added
to many consumer and commercial products including textiles,
carpeting, construction materials, and electronics in an effor
w0 reduce their combustibility. Although these compounds have
been both banned or phased-out from production in a number
of countries, human and environmental exposures continue as
products that contain these chemicals are still used and recycled,
and present legacy contamination problems upon disposal. As a
consequence, PBDYEs are widespread and persistent contaminants
in both living and non-living pares of the global environment.””?

PBDEs can have from 1-10 bromine atoms substituted on

dipheny! ether (Fig. 1). There are 209 PBDE congeners (BDE-1
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to BDE-209) theoretically possible depending on the number and
substitution patterns of bromine. In practice, however, the num-
ber of congeners formed is limited based on the chemical proper
ties and composition of the PBDE commercial mixtures. Three
PBDE commercial mixtures have been produced: PentaBDE,
OctaBDE, and DecaBDE. The PenraBDFE commercial mixture
is a heterogeneous mix of tetra-, penta-, and hexaBDEs and was
added mostly ro polyurethane foams and textiles, and to a lesser
extent in epoxy and phenolic resins and polyesters. The majority
{(~95%) of PentaBDE was used in the US where it was added to
polyurethane foams in furniture cushioning and could constitute
up 1o 30% by weight of these products.!” The OQctaBDE com-
merctal mixture is made up of higher molecular weighe (MW)
constituents, hepta, octa, and nona-BDEs and was added pre-
dominantly w acrylonitrile buradiene styrene (ABS) nsed in the
plastic housing of office equipment and electronics. The produc-
ticn and use of PentaBDE and OctaBDE were phased out in the
US and banned in the European Union in 2004 due to concerns
about their persistence, bioaccumuladion, and toxicity. In 2009,
these products were also listed as persistent organic pollutants
{(POPs) under the United Nations Stockholm Cenvenrion!
The DecaBDE mixture contains the fully brominated congener
decabromodiphenyl ether (BDE-209; ~97%) with trace amounts
of nonaBDEs. It is used as an additve in high impact polysty-
rene, polyolefin, and polypropylene plastics used in electronics,
auromobiles, airplanes, and construction and building materi-
als. To achieve US fire safety standards for plastics, high impact
polystyrene plastics typically contain ~10-15% of DecaBDE .
DecaBDE is one of two dominant BFRs used worldwide with
2007 global consumption estimated at ~73000 t (-161 million
pounds).>¥ The production of DecaBDE was discontinued in
the US at the end of 2013 under a voluntary phasc-out and has
been restricted from use in electronics in the European Union
since 2008. It is generally unrestricted from use in Asia?
PBDEs strucrurally resemble polybrominated biphenyls
{(PBBs), polychlorinated biphenvls (PCBs) and some biomol-
ecules, most notably thyroid hormones (THs: Fig. 1). Because
PBD¥Es are not chemically bound but are rather added to plastics,
they can enter the environment during production and may be
released into the surrounding environment and biota with the
breakdown and volatilization of the parent polymer. Like other
persistent, hydrophobic chemicals, the most important route
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PBDEs (x + y = 1-10)
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Thyroid hormone (thyroxine; T4)

PCBs (x +y =1-10)

Flgure 1. Structural comparison of EBDEs, PBBs, PUBs, and thyroxine
hormone

of uptake in aquatic animals appears to be by wophic transfer
and consumption of foods contaminated with PBDEs." This
dietary exposure pathway in aquatic animals is distinguished
from human uptake that appears to depend on both dietary expo-
sures and the incidental ingestion of PBDE-containing duse4Y

Despite the discontinued use of PentaBDE, is con-
stituents, including BDE-47 (2,2’4,4-tctraBDE), BDE-99
(2,244 5-pentaBDE), BDE-100  (2,2°4,4,6-pentaBDE),
BDE-153 (2,2°.4,45,5 -hexaBDE), and BDE-154
(2,2°,4,4’,5.6-hexaBDE), continue to be dominant PBDEs fre-
quently detected in humans and wildlife worldwide despite the
generally more limited use of PentaBDE outside the US.*2
Potential sources of these congeners are likely related to the ongo-
ing use and recycling of products that contain PentaBDE as well
as their high environmental persistence and long-range global
transport potential.®? Another source of these lower MW PBDEs
may be attributable w the breakdown of higher PBDEs, such as
BIDE-209, which can undergo photolytic degradation,® micro-
bial breakdown,” and metabolic biotransformation® to lower
MY congeners.

Recent attention has focused on the potential for BDE-209
and other highly brominared PBDEs to bicaccumulate. BDE-209
is now the dominant PBDE measured in abiotic compartments,
typically at ppb to ppm levels (ngfg dry weight [dw] © low mg/g
dw? in dust,'™* soils and sediments,”?’ and biosolids.***! Studies
show that BDXE-209 is bicaccumulating in a large number and
variety of biota residing all over the world, including, for example,

34-36

in birds and bird eggs, ™ terrestiial and aquaric mammals,

and plankton, fish and shellfish?** Human body burdens of

BIDE-209 also appear to be rising including among E-waste
workers and people residing near PBDE production facilities™
as well as among the general population, particularly young chil-
dren in the US.?*% People residing in some regions of China with
heavy E-waste recycling operations report some of the highest
PBDE body burdens in the world, with BDE-209 concentrations
in serum at greater than 3000 ng/g lipid. DecaBDE is now more
commonly detected among the general population, particularly
young children in the US population. For example, recent work
in our laboratory,' in collaboration with the Centers for [isease
Control ({CDC) and Bosten University, measured BDE-209 lev-
els in ¢he serum of a North Carolina cohort of toddlers (3 v old)
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ranging from <668 ng/g lipid. In addition, other highly bromi-
nated PBDEs are being detected more frequently in biota, includ-
ing the hexa- w nonaBDEs, which may reflect the increased use
of BDE-209 and its environmental breakdown and biclogical
metabolism. 74

This review summarizes the biological disposition and toxicity
of PBDEs in teleost fishes with particular focus on thyroid dis-
ruption mechanisms and interactions as this endocrine system is
an important target of the PBDEs. Indeed, most laboratory stud-
ies published to date in fish {and other vertcbrates) have focused
on the potential for PBDEs to perturb chyroid signaling, as well
as impair neurological development and reproducton. While
these are often the primary endpoints of focus, other toxicity
outcomes have been observed in fish as well, including immuno-
roxicity™ and oxidative stress 44 The PentaBDE commercial
mixture and its component congeners have been the subject of
most study to date, with less known abour the toxicity of BDE-
209 and the other higher MW PBDE congeners. However, BIDE-
209 is the only PBDE that has been evaluated for carcinogenicity
with “suggestive evidence of carcinogenic porential” based on
increased thyroid cell hyperplasia and thyroid adenomas/carci-
nomas in male mice and liver tumors in male rars.”

PBDE data generated in fish not only informs our understand-
ing of potential effects in wild fish species and populations but
also provides important information on mechanisms of toxicity
and disease in humans due to the high degree of gene and func-
tional conservation shared across vertebrates. Indeed, PBDE tox-
icity measured in fish shares mutual features and effects to those
observed among in vive and in vitro mammalian models, sup-
porting potentially common biological mechanisms of toxicity
that also lend biological plausibility to the human epidemiclogy
dara on PBDEs. Therefore, this review includes brief discussion
of effects observed in rodent and human epidemiology studies in
so far as to frame a fuller picture of the toxicity of these chemi-
cals. PBDE human health effects have been examined in several
informative reviews and readers are referred to these papers for

more detailed analyses #-

Toxicokinetics of PBDEs

Parterns of PBIJE toxicokinetics (f.e., absorption, distribution,
metabolism, and excretion: ADME) in fishes have been shown to
vary depending on the PBDE congener, species, life-stage, and
route of exposure. Table 1 summarizes PBDE toxicokinetic stud-
ies in fishes to date.

PEDE Uptake and Tissue Distribution

Our understanding of PBIDE absorption in fishes is somewhat
limited by the species and PBDE congeners studied. Two early
studies in Morthern Pike (F. fucius) found that BDE-47 was read-
ily absorbed with measured uptake efficiencies of “C-BDE-47
and unlabeled BDE-47 at 36-100% %" This rescarch group also
measured uptake efficiencies of BDE-99 and BIDE-153 in pike at
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~60% and ~409, respectively. Studies in rodents have likewise
measured absorption of BIXE-47, -99, -100, -153, and -154 in the
range of ~70-90% 7% However, other studies that have exposed
fish to unlabeled PBDEs through the diet have measured lower
assimilation efficiencies of some congeners, including BDE-99,
BDE-153, BDE-183, and BDE-209 suggesting species-specific
differences in assimilation efficiencies of PBDEs possibly due
to differences in metabolic enzyme systems.” ™™ For instance,
BIDE-209 absorption in some teleost fishes has been shown w
occur at a slow rare, which may allow for greater metabolism and
climination than seen in terrestrial species. A dietary study in
juvenile rainbow trout receiving 7.5-10 mg/kg bw-day of BDE-
209 measured bioavailability ar <1%% with higher bioavailabil-
ity of 3.2% measured in juveniles of the same species receiving
a chronic dietary exposure.’® In fathead minnow juveniles and
adults exposed orally w ~10 uglg ww food, BDE-209 uprake

efficiencies were also low at 5.8%% and 1.3%.,%

respectively.
Nonetheless, despite its low bicavailability, BDE-209 appears w
be bicaccumulating in fish as shown in field measures and labo-
ratory-based studies with BDE-209 spiked sediments. While the
apparent dichotomy between low bioavailability of some PBDES,
notably BDE-209, and observed bicaccumulation are not fully
described, rainbow trout exposed to BDE-209 thru the dier have
been shown to bicaccumulate BIDE-209 at 1.3 rimes the concen-
tration of levels in their food, suggesting bicaccumulation that is
strongly influenced by tissue compositon.® In addition, recent
findings in Chinese sturgeon (A. sinensis) also support that tissue
distribution patterns of the higher PBDESs, rather than lipid bind-
ing, are important factors influencing their bicaccumulation.®
This study showed low partitioning of the higher PBDEs (hept-
aBDEs to BDE-209) from blood to tissues that could in turn lead
o their slower delivery 0 metabolically active tssues and thus
higher bioaccumulation.

The dominant PBDEs measured in biota (i.e., BDE-47, -99,
-100, -153, and -154) are deposited to lipophilic dssue compare
ments, and these congeners continue to be detected in human
serum, breast tissue, and milk'®*® and in adipose tissues of
a variety of wildlife, including free ranging fish species.!*05%
PBIDEs have been shown o cross the blood-placenta and bload-
brain barriers to accumulate in the brains of perinatally exposed
rats exposed © the PentaBDE commercial mixture™ and some
birds of prey.® In addition to accumulation in lipid-rich tissues,
the liver is an important rarget of PBDE disposition and rox-
icity. The US EPA National Toxicology Program has published
findings showing hepatotoxicity, including elevated liver enzyme
activiry accompanied by hepatic hypertrophy and vacuolizations
in mice exposed orally to the PencaBDE mixture for 13wk’ The
liver also appears to be an important site of PBDE accumulation
in fish. In pike fish, “C-BDE-47 accumulated in the liver and in
fipid rich tissues. In rainbow trout (O. mykiss) exposed orally to
BIDE-209, the highest concentration of BDE-209 was measured
in the liver on both a lipid normalized and body weight basis,
followed by accumuladon in the serum, with less accumuladon
in the carcass.”” BDE-209 deposition to adipose tissues might be
predicted given its low water solubility (<0.1 pg/l) and high octa-
nol-water partitioning coefficient (log ng; 6-12)." However,

www.landesbioscience.com
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studies have shown that this pattern of preferential deposition
lipid depots does not occur substandally for BDE-209. Rather,
BIDE-209 preferendally distributes to highly perfused, blood-
rich tissues, particularly the liver, kidney, hearr, and intestinal
wall.®7%7 The underlying reasons for this distribution pattern
appear to be attributable to the large size of BDE-209 and its
ability to bind with plasma proteins.”

PBDE Reductive Metabolism in Fish

To understand PBDE metbolic pathways in fish, it is infor-
mative to frame the discussion in terms of present knowledge
of PBDE metabolism in mammals as this is now fairly well
described. The rodent literature suppores a PBDE metabolic
pathway in mammals that has two major reactions: (1) a cyto-
chrome P450 (CYP450)-mediated epoxidation of PBDE phenyl
rings catalyzed predominantly by CYPZB (by constitutive andro-
stane receptor [CAR] inductions) and by CYP3A (by pregnane X
receptor [PXR] inductions); and (2) debromination or Phase 11
conjugation of an OH-intermediate with glucuronides catalyzed
by uridine diphosphate glucuronosyl transterases (UDPGTs)
and with sulfates by sulforransferases (SULTs).#7% Reductive
debromination reactions appear to be minor pathways of PBDE
metabolism in mammals {c.g., BDE-209 debromination to octa-
and nonaBDEs).

PBDE metabolism in teleost fish appears to be different from
that in mammals. As outlined in Table 1, a large number of stud-
ies have shown reductive debromination of PBDEs to be a major
route of metabolism, including in common carp (C. carpio),”

361,62,

fathead minnow (I, promelas)®™*; rainbow troue,® lake trout

76,8% and

(5. mamaycush),” Chinook salmon (0. shawytscha),
zebrafish (D, rerio).”® However, while PBDFE reductive debro-
mination appears to be a major metabolic pathway in fish, the
role of specific enzyme systems in catalyzing this blotransforma-
tion remains unclear. One pathway that has been hypothesized
to mediate PBDE reductive metabolism in fish is by the activity

%3 Diios are mem-

of iodothyronine deiodinase (Dio) enzymes.
brane-bound enzymes that are expressed on plasma membranes
and in the endoplasmic reticulum, and regulate TH levels in ver-
tebrates.” There are three known Dio iscforms in fish, Types
1, 2, and 3 (Do 1, Dio 2, and Dio 3, respectively) that share
functional homology with mammalian Dio isoforms. As illus-
trated in Figure 2, the conversion of the TH ¢hyroxine (T4) 1o
the genomically active 3,3",5-triiodothyronine (T3) hormone is
catalyzed by the cleavage of iodine from the mesa-position of the
outer phenyl ring of T4. The reductive debromination of PBDEs
in fishes is also dominated by mesa-cleavages of bromine, sug-
gesting a possible role for these enzymes in catalyzing PBDE
debromination.”® More recent studies have shown that the
reductive debromination of BDE-99 to BDE-47 can be substan-
tially inhibited by co-incubating liver microsomes from commoan
carp with THs, suggesting thar BDE-99 may be a substrate that
competes with THs for Dio enzyme activity. %

Although BDE-glutathione metabolites have been measured
in rodents™ ! and birds,”? glutathione-S-transferases (GSTs) have
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Table 1. PRDE toxicokinetics measured in teleost fish species

Spedies Treatment Route Dose/Duration Effects Observed Ref
e " - . Reductive debromination: BDE-99 to BDE-47
Common carp G, Hver 1229 pmiol/mg protein; L . . .
) ) BDE-99 i L Metabolism in fiver > intestine 74
{Juv.,; C. carpio} microsomes 60 min incub .. )
Mo debromination by G microflora
Atlantic salmon PentaBDE; Diet 10,50 mg/kg bw; 7 d No significant hepatic CYP1-A induction or protein 75
{Juv; 8. salar) OctaBDE expression
Chinook Liver . i
i ) . Reductive debromination: BDE-99 to BOE-49
salmon (Adu,; O. BDE-99 ricrosomes, 0.03 - 1.8 v 16 hincub cauctive ae r?m”.]f!..w.n o 76
- ) negative GST/CDNB assay
tshawytscha) cytosol
PCBs, PCNs, 90 Hipid (104 L .
Northern Pike (£, : . y X L ng/p. el ( H Uptake efficiencies: BDE-47 = ~90%; BDE-99 = ~60%; .
. BDE-47,-99, Diet injected into rainbow . R 51
Lucius) . BDE-153 = ~40%
-153 trout); 9d
HC-BDE-47 uptake > 90%
. ” X , ) Disposition: Highest in liver, adipose tissue, spinal
Northern Pike “SC-BDE-47 Diet 16.2 pg/ul; 9, 18,36,65d i X . 52
E cord-surrounding tissue, eyes, gall bladder; Lowest in
muscle, spleen, gills
Crucian carp {C - ) . BDE-15 accumulation in gill, tiver
auratuis) BDE-15 Aqueous 0, 10,160 pg/t; 50 d 2 mono-brominated, 3 hydroxy metabolites 77
Zebrafish {Larv.) BDE-209 Spiked sediment 125 mg/lkg; 4 - 192 hpf BDE-209 bioaccumulation 6
Reductive debromination: hexa- to nonaBDE formation
) . liver, muscley; BDE-154 dominant
Rainbow trout DecaBDE (Dow X 7.5 - 10 mg/kg bw/day; 16, {liver, muscie) omnan
Uuv.; O. mykiss) FR- 300BA) Diet 49,120d; 71 d depuration BDE-209 uptake: 0.02-0.13% »9
U YRS s ST e P BDE-209 accumulation: 870 + 219 ng/g ww {liver); 38 +
14 ng/g ww {musdle)
AhR-mediated effects linked to PBDD/F impurities;
Zebrafish {Juv,; D, PentaBDE - . ,
rats L v = a“ Aguenus 0,01, T ma/h 4wk Weak induction CYP1A; no DR-CALUX response 78
rerio) (DE-71) . .
{purified DE-71)
Lake whitefish
AC lation: BDE-209 + BDEs (BDE-206, -207,
Uuv; €. BDE-209 Diet 0,0.1,1,2 yig/g; 30 d ceHmaten nonaBDEs { 79
, ) . -208) in liver
clupeaformis)
1 and 100 nmol/g ww Reductive debromination thigh dose); 12 nmol of
5 § . BDE-28,-183, . ) BDE-154/g ww fish; 3 nmol of BDE-149/g ww fish; < 2
Zebrafish (Adu. Diet food at 2% bw/day; 42d . X > 57
ebrafish (Adu.) -209 {mix) € oo j\/ith 01 ivd/d:za nmot of BDE-153 g ww fish; Uptake: BDE-28 (100%) >
o BDE-183 (10%) > BDE-209 (< 1%)
Upstake efficiency: BDE-28 = 16%; BDE-47 = 15%; BDE-
Common sole BDE-28,-47, 82 - 184 ng/g ww food at 99 = 13%; BDE-100 = 14%; BDE-153 = 10%; BDE-209 =
(J.uV' 5 solﬁ;a l‘) -99,-100, -1 53, Diet 0.8% bw/day; 84 d, 149 1.4%. 55
R =209 (mix) d dep Reductive debromination: BDE-49; BDE-154; BDE-183;
BOE-202; unk tetra-, penta-, hexaBDEs
Common sole BIDE-28,-47, 82 - 184 ng/g ww food at Oxidative metabolisrm: 6-OH-BDE-47; 4™-OH-BDE-49;
Uuv) -29,-100, -153, Diet 0.8% bw/day; 84 d, 149 4-OH-BDE-101; 4-0OH-BDE-103 80
T -209 (mix) d dep MNo MeQ metabolites detected
Liver Reductive debromination (BDE-99 to BDE-47) more
Commeon carp BDE-99 microec;mes 354 pmok 1- 250 uhg; 90 prevalent in liver microsomes than cytosol .
{Actu.} - o o miin incub, THs (T3, T4) and iodoacetate inhibited debromination;
cytosol - . . .
role for delodinase enzymes in reductive metabolism
BDE-209 bicaccurmulation
. . ol BOE-209 uptake efficiency = 5.8%
Fathead . . 10 pg/g food at 5% bw, ) L _
(Jjuv C: T;;;:Z\SN} BIDE-209 Diet Mg gdao? ng o bw/ Reductive debromination to penta-octaBDEs 51
WU B Vi BDE-154 dominant metabolite
BDE-101 lowest MW metabolite
) BDE-209 bi . lati
. 95 ng/g ww food and 10 . . mjaccumu aron
Fathead minnow i i Reductive debromination to penta - octaBDEs
BDE-209 Diet ua/g ww food at 39% bw/ . . . 62
(Adu) dav: 28 d with 14 d de BDE-154 dominant metabolite
yie v i BDE-101 lowest MW metabolite

dep = depuration; EROD = ethoxyresorufin-O-deethylase; dpf = days post fertilization; dph = days post hatch; dio = deiodinase; DR-CALUX = chemical-
activated luciferase gene expression mediated by Ah-receptor activation; Gl = gastrointestinal; HDT = highest dose tested; hpf = hours post fertiliza-
tion; PBPK = physiologically based pharmaccokinetic; UDPGT = uridine diphosphate glucuronosyl phosphate.
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Table 1. PEDE toxicokinetics measured in teleost fish species {continued)

Spedies Treatment Route Dose/Duration Effacts Observed Raf
Atlantic cod (i Liver: | mRNA transcripts encoding CYP1A, CYP2(33-
G mnrhu:;') i BDE-47 Agueous 5ug/ 21d fike, CYP3C1-tike, UDPGT 82
T No effects on antioxidant genes (GSH-Px, GR)
i inati -99,-153,-183, -203
Rainbow trout BDE-28, 47, Reductive debrommaj:;?)i;o_t;igE 99,-153,-183,-203,
C . -49,-99, -100, . , e .
. c?mmon carp Liver t uM; 24 h {hepta to BDE- Carp: meta-position debrom dominated
Chinook salmon -153,-154, . ) _ . X o 83
L microsomes 209% 1 h {tri- to hexaBDEs) Salmonids: meta- and parg-position debrom
{O. tschwatcha) -183,-203, X . R i
Uuv) 208, -200 Mo metabolism of PBDES lacking metg-substituted Br
7 ’ (BDE-28, -47, -100)
Reductive debromination (trout): Formation BDE-207,
i 940 ng/g ww food, 1% -208, -188, -201, -202, unk. octa-heptaBDEs
Rainbow trout . - B .
e bw/day; 5 mo; 15 pmol/ BDE-209 uptake (trout): 3.2%; liver > serum > intestine N
Common carp BDE-209 Diet, in vitro ) o A &0
mg protein; 1,24 h > carcass {lipid-normalized)
{huv) - i L
{microsomes) In vitro: Formation of octa - nonaBDEs {trout), hexa -
octaBDEs (carp)
Reductive debromination: Formation of BDE-154, BDE-
C " . . 940 ng/day-fish; 60 d w/40 - _ !
cvm(rj:i/n)carp BIOE-209 Diet g d}; (’; w/ 155, unknown hexa- to octaBDES 25
e P No BDE-209 bioaccumulation
§ Reductive debromination (Gl tract):
( -fis JE-98);
Common carp BDE-95, Diet éoﬂonng)/ddaa%ﬁz;‘(fng- 1922) BUE 99 - BDE47 58
uv) BDE-183 e %9? P 3;”_3'7 g BDE-183 —» BDE-154, unk hexaBDE :
3L
P Uptake: BDE-99 = 9.5%; BDE-183=17%
_ . BDE-47 ac lation, high assimilati
Cornmon carp BIDE-28, -47, i 470 ng/day-fish; 60 d w/40 . X secumia .Km g assimiiation X
\ N Diet ; No BDE-29 bicaccumulation; No hydroxy metabolites 34
{Juv) -99, - 153 (mix} d dep
detected
6-OH-BDE-47 No Ok, MeC-BDEs in BDE-47 treated fish;
Japanese medaka 6—?£PO~BDE—4'} Maternal 21,8, 0.9 py/g dw food at in vivo and in vitro conversion of 6-OH-BDE-47 to 85
(Adu,; O. fatipes} ) E—SDF—/E? ’ ' 2% bw/day; 14 d 65-MeO-BDE-47 (and vice-versa) -
- Maternal transfer to eggs
Penta and Reductive debromination facilitated by at least one
Common carp DecaBDE Diet 100, 120, 150 pg/day/fish; rmeta- or para- doubly flanked Br %6
{Juv) mix:ures 20d 11 OH-BDEs measured in serum of pentaBDE exposed
) fish; No OH-BDEs in decaBDE exposed fish
Reductive debromination; Formation of BDE-126, -154,
Chinese stlurgef:)n BDE-209 Fietd collected Liver micro omes, PBPK 188, -202, .204, 197 LOW'paF'(IEICfﬂ coefﬁﬂen?s from 63
{Adu; A, sinensis) modeling blood to tissues lead to higher bioaccumulation of
hepta to BDE-209 in absorbing tissues

dep = depuration; EROD = ethoxyresorufin-O-deethylase; dpf = days post fertilization; dph = days post hatch; dio = deiodinase; DR-CALUX = chemical-
activated luciferase gene expression mediated by Ah-receptor activation; Gl = gastrointestinal; HDT = highest dose tested; hpf = hours post fertiliza-
tion; PBPK = physiologically based pharmacokinetic; UDPGT = uridine diphosphate glucuronosyl phosphate.

not been found to be involved in the reductive debrominartion
of BDE-99 1o BDE-49 in Chinook salmon™ or of BDE-99

BDE-47 in common carp,™

suggesting that they may not play
an important role in PBDE debromination in fish. This finding
has been subsequently confirmed in negative resules from in vitro
testing with liver microsomes from Chinook salmon, rainbow
trout, and common carp incubated with several PRDE conge-
ners® and in juvenile fathead minnows exposed in vivo to BDE-
209.% Taken together, despite these lines of indirect evidence,
additional work is needed o better understand the underlying
enzymes catalyzing the reductive debromination of PBDEs in
fishes, and the potential role of Dio enzymes and/or other pos-
sible reductases that have yet to be described.

www.landesbioscience.com
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Mixed Evidence of PBDE Oxidative Metabolism in
Fish

Laboratory studies in fish have presented mixed results con-
cerning the formation of hydroxylated PBDE (OH-BDE) metab-
olires. For instance, no OH-BDEs were detected in the serum of
common carp receiving dietary exposures to a mixture of BIJE-
28, -47. 99, and -153 .3 Likewise, OH-BDEs were not detected in

salmon incubated with various PBDEs, including BDE-209.7%
In contrast, 11 OH-BDEs were reported in the serum of juve-
nile common carp exposed to the PentaBDE mixture with no
OH-BIDEs in DecaBDE exposed fish.* Another BDE-209 scudy,
however, reported substantial OH-BDE and methoxy PBDE
{(MeO-BDE) formation in trout” OH-BDE metabolites were
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also reported in juvenile common sole (5. sefes L.} exposed to a
mixture of congeners (BDE-28, -47, -99, -100, -153, -209).% In
studies showing positive OH-BDE results, the gas chromatogra-
phy-mass spectrometry (GC/MS) injection techniques used in
the PBDE analyses were cither not specified® or employed split/
splitless injection.*®” GC/MS splitless injection techniques for
PBDE analysis can lead o thermal degradation of parent PBDEs
and the formation of byproducts in the GC/MS inler char may
confound identification of MeO-BDEs (GC/MS derivatives of
OH-BDE metabolites).” Although potential analytical con-
founders were not addressed, if oxidative metabolism occurs in
fish, it appears to be a minor metabolic pathway compared with
reducrive debromination.

In vivo and in vitro studies in fish have shown both weak

795 and inhibition®¥® of ethoxyresorufin-O-deethylase

induction
(EROD) activity (biomarker of CYPIA and aryl hydrocarbon
(ARR) induction) upon exposure 1o individual PBDE congeners.
However, a larger number of PBDE studies in teleost fish have
shown no AhR/CYPIA activation.>*77® Thus, it appears that
PBDEs operate predominantly through non-dioxin, AhR inde-
pendent toxicity mechanisms and are not metabolized by CYP1A.
Conversely, the PentaBDE commercial mixture contains small
amounts of polybrominated dibenzo-p-dioxins/dibenzofurans
(PBDDs/PBDFs) that are trace byproducts formed by thermal
stress during production and that activate the AhR. The reasons
for the disparate results in the literature are not clear but may
be attributable to variations in the purity of formulations tested.

e29430-6
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While mammalian studies support PBDE oxidative metabo-
lism by CYP2B and CYP3A catalyzed by CAR/PXR induc
tions, similar pathways have not been observed in fishes. The
expression of CYP2B in fish and the regulatory mechanisms
involved in its induction are still unclear. In mammals, pheno-
barbital (PB) and ortho-substituted halogenated aromatics (e.g.,
ortho-chlorine-substituted PCBs) are strong inducers of CYP2B
through activation of CAR. In teleost fish, however, the induc-
tion of CYP2B in the presence of PB-type inducers has not been
observed !® Thus, there appear to be important funcdonal differ
ences between piscovorous and mammalian CAR/CYP2R thar
may play a role in its lack of inducticn in PBDE-exposed fish,
although this has not been examined. With regard to other ARR-
independent mechanisms, the function and dssue distribution of
enzymes in the CYP3 gene family are not well characterized in
fish, bur the CYP3A isoforms appear highly versatile with broad
substrate affiniries.!”

PBDE Conjugation in Fish

There has been little research to date 0 examine the role
of UDPGTs and SULTS in the metabolism of PBDEs in
fishes, although these enzymes are important caralytic driv-
ers of Phase Il metabolism in fishes'® The UDPGTs catalyze
the glucuronidation of an array of endogenous and exogenous
substrates to more polar, water-soluble compounds for elimi-
nation. The SULTs catalyze the transfer of the sulfonate from
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Table 2. Whole-body elimination half-lives {t
fish species

12

} of environmentally relevant PBDEs measured and estimated in humans, laboratory rodents, and teleost

PBDE Teleost Fish Humans Rodents
Congener half-life {days) half-life half-life {days)
18-42 {Common carp)®* 25¢ (mouse)’s
BDE-47 173-519 (Lake trout)®® 15-25y'% o n
12 (japangs: r:e;zta))mg 7 19-30e (rat, tetraBDE)' ™
BDE-99 173-519 {Lake trout)®® 1.8-34y"* &d (rat)®!
BDE-100 46-80 {Lake trout}™ 1.3-1.8 ng 42-52e {rat, pafsntaBi‘)E.)'i 1
y 4-23{(C 84 25 :
BDE-153 1o ;Ogrg:i”;j;i’iag 36-12.4y'%° 50-105e (rat, hexaBDE)'
54— ake
=2 {r 7
BDE-154 177;32;3:”:0: ‘a:)ﬂ’;é 23-43y'% Unknown
— ake trout)®”
BDE-183 173-519 (Lake trout)™ sagl Unknown
10-15 (Zebraﬂsh)i’/
) 21-34 {Lake trout)® \
BDE-209 P (Zezr: ﬁ:;;if’} 154 25,86 {rat) >3
3" phosphoadenosine-5"-phosphosulfate (PAPS) o hvdroxvlated Fish Thyroid System
phosp phost 3 3

and amine substituents on numerous exogenous and endog-
enous substrates to facilitare eliminarion. In zebrafish, several
UDPGT™ and SULT genes'™'® have been characterized with
prototypical substrates such as bilirubin, TH, estradiol (E2), tes-
wosterone (1), and phenolic contaminants. As many as 10 dif-
ferent UDPGT isoforms have been identified in zebrafish, with
nucleotide similarities to some mammalian UGT? and UGT2
gene families.'”® Two studies have shown a decrease in the relative
mRMNA abundances of genes encoding UDPGTIab in zebrafish
larvae exposed to BDE-209"¢ and UUGT{ in juvenile Adantic
cod (G. morbua) exposed to BDE-47.%2 This decline may be a
response to reduced TH levels as UDPGTs are involved in the
metabolism of THs.

PBDE Elimination

Table 2 provides whole body eliminarion halflives (¢}
reported in fish for PBDEs frequently detected in the environ-
ment and biota, with inclusion of data in humans and rodents for
comparison. [n rodents, the major route of PBDE climination is
by the fecal route with low levels of excretion in the urine and bile
depending on the PBIDE congener.™ In fish, routes of PBDE
elimination have not been targeted specifically but the carly stud-
ies in pike suggest that biliary and fecal excretion also occurs.”
Some reports estimate apparent half-lives in humans for the tetra
- hexaBDEs that are subseandally longer than those reported in
rodents and some fish. Conversely, some data in rodents suggest
relatively short halflives (e.g., BDE-99) that are incongruous
with the human and fish data. Thus, there continues o be uncer-
tainty about PBDE elimination half-lives in fish and other biota
with substantial species variability apparent that appears related
to differential metabolism.

www.landesbioscience.com
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To discuss PBDE-related TH disruption, it is informative to
broadly highlight current knowledge of the structure and func-
tion of the fish thyroid with some comparison to the mamma-
fian thyroid. The vertehrate thyroid is well-conserved across taxa,
and chemical effects in lower level vertebrates like fish can reveal
mechanisms of thyroid dysregulation in higher level species. THs
are key regulators of vertebrate development, endothermic basal
metabolism, and organ system physiology. The imporeance of
TH in brain and somatic development is well established, and
small changes in maternal or feral TH can cause severe motor
skill deficiencies and irreversible cognitive impairments.'' Recent
attention has focused on the permissive role of THs in regulas
ing physiological processes in adules, including neurological plas-
ticity, mood, cognitdon, and reproduction?® In fish, THs are
important mediators of many physiological, developmental, and
behavioral processes, including growth and metamorphic ran-
16,117

sitioning, osmoregulation® olfactory imprinting,”” inrer-

1 90,122

renal regulation,'” otolith formation,'”' and reproduction,

often acting in concert with other hormones. 125124

Structure and Function of Fish Thyroid

The general architecture of the thyroid appears to be similar
across vertebrates whereby circulating levels of TH are tightly
controlled by both a cencrally operating hypothalamic-pitu-
itary-thyroid (HPT) axis and in peripheral tissues through the
actvity of Dio enzymes, among other dynamically operating
regulatory processes (Fig. 3). The funcdonal unit of the central
HPT is the thyroid follicle where the THs T4 and 3,5,3 -triio-
dothyronine (T3} are synthesized and secreted into circulation.
However, there continue to be gaps in our understanding of the
fish thyroid in comparison o the more thoroughly studied mam-
malian and amphibian thyroid systems. Typically in teleost fish,
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Figure 3. Overview of TH regulation and signaling in teleost fishes. TRH =
thyroxine: T3 = 3.3/ 5-trilodothyronine, 112 = 3.3/ 5'reverae T3 12 = 3 3/ dilodothyronine; UGT = uridine diphosphate glucuronosyl transferase; SULT
= sulfotransferase: TH-G = glucuronidated thyroid hormone; TH-S = sulfated thyroid hormone: Mrp = multidrug resistance associated protein: Mdrl
= monocarboxylate transporter; OATP = organic anion transport polvpeptide; TR = thyroid

thyrotropin releasing hormone; TSH = thyrold stimulating hormeone ™ =

thyroid follicles are found dispersed predominantly in the ven-
tral pharyngeal region, rather than being organized in a compact
lobular gland as scen in higher vertebrates. One important dif-
ferentiating feature of the fish thyroid may relate to how THs are
produced and regulated. In fish, T4 may be the primary, pos-
sibly only TH produced in the thyroid where it is under nega-
dve feedback control by the HPT axis. The production of T3
in fish, in contrast, is thought to be under exclusive conerol of
peripheral tissues, although this has not been studied recenty
or beyond Salmonid fishes.* In some contrast, the mammalian
thyroid gland produces both T4 and to a lesser extent T3 under
negative feedback control by the central HPT. Thus, while extra-
thyroidal regulation of T3 is troporcant in all vertebrates, includ-
ing for instance in the brains of developing mammals, in fish
the formation and regulation of T3 may be dominated by local
control in response to the needs of individual tissues rather than
by T4 availability and through the central HPT axis. THs circu-
fate in plasma bound to TH binding proteins, including thyreid
binding globulin (TBG), transthyretin (TTR), and

humans, the primary transporter of TH is TBG while in rodents

bumm In

it is TTR.'® Less is known about the dominant transporters in
fish although it has recently been shown that TTR may bind TH
in some species.!”*®® Most TH in fish circulation is bound w
protein with only a small amount (< 1%) thought o be free and

available for uptake into cells. As demonstrated in rodents, the

e29430-8
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cellular ranspore of THs in fish is mediated largely by mem-
brane bound transporters, including the high affinity monocar
boxylate transporter 8 (MCT8) and organic anion transporter

129-132

polypeptides (e.g., OATP1cl), among others.

Peripheral TH Regulation and Signaling in Fish

Once in the cell, T4 can be deiodinated o the acrive T3
hormone or inactivated w0 3,35 -trliodochyronine (7T3) or
3,3"-dilodothyronine (T2) (Fig. 4). Dio 1 and Dio 2 enzymes
in vertcbrates may catalyze T4-outer ring deiodination (ORD)
o produce the active T3 hormone, while Dio 1 and Dio 3 caca-
lyze T4-inner ring deiodination (IRD) w inactive T3, Thus,
Die 1 can be involved in both ORD and IRD. In addition,
T3-IRD and rT3-ORD can metabolize hormone to T2, THs
in vertebrates are further conjugated in the liver to glucuronides
or sulfates catalyzed by UDPGTs and SULTs, respectively, and
excreted through the bile and urine. The transcriptional activity
of T3 is mediated by complexing with nuclear thyroid receptors
{TRs) that bind o TH response elfmf:nts {TREs) to induce the
expression of TH responsive genes.!™ Increased attention is also
focusing on nongenomic pathways of THs signaling by integrin

mediated signaling and kinase activation.!?#1%
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Many of these laboratory studies in fish have
shown declines in circulating levels of THs and
altered TH signaling in some species exposed
to these PBDE congeners and mixtures. Table 3
provides a summary of studies in fish conducred
to date. Similar to results in fish, in vivo rodent
studies and cell-based assays have reported
PBDE-induced disruption of thyroid homeosta-

sis, including declines in circulating THgd-1s,

I
P
IOH altered expression and activity of TH metabo-

lizing enzymes, "1 and mmpeririw binding

with plasma transporters.® Human epidemi-
ology studies have shown assaciations between
altered plasma concentrations of THs in adults

and PBIDE levels in serum and dust.°5?

BDE-47, PentaBDE, and OH-BDE
Thyroid Dysfunction

In one of the carlier studies in fish, depressed

dal peripheral tissues of vertebrates.

Figure 4, Pathways of outer and inner ring delodination of thyrold hormones in extrathyrol-

levels of circulating free T4 and T3 were mea-

sured in the plasma of lake trout (S. namaycush)

While Dio enzymes in fish and mammals are believed w
share many funceonal features, relative tissue distributions and
activity vary, which may have implications for cheir role in TH
137

regulation.” For instance, Dio 1 has been localized to the
kidneys and liver of fish and mamumals {as well as in the marm-
malian thyroid gland).”®* However, hepatic T4-ORID activity is
thought to be catalyzed mostly by Dio 1 in mammals and Dio
2 in fish.P5% One notable exception to this peripheral TH pro-
duction may occur in the teleost fish brain with its relatively
low T4-ORD activity. Early studies that measured deiodination
in rainbow trout attributed reduced brain T4-ORD in fish to
absent or negligible Dio 2 expression.* However, more recent
studies using quantitative PCR have localized mRNA expression
of dio? genes in the fish brain, although at comparatively lower
levels than in other tissues."24 Limited evidence also suggests
that the transcriptional response of Dio 2 in the fish brain may be
more sensitive to systemic TH changes than Dio 2 in the liver.!#
Likewise, in mammals, Dio 2 has demonstrated substantial phys-
iological plasticity in the brain with a short half-life of ~40 min
suggesting that it might also be an important regulator of intra-
cellular T3 in these tissues.'™?

PBDE Thyroid Disruption in Fish

Because PBDEs, pardcularly OH-BDE metabolites, are simi-
far in structure to THs, concerns have been raised abour their
cffects on thyroid system functioning in both mammalian and
non-mammalian vertebrates.”™ In fish, PRIDEs have been shown
w0 perturb the thyroid system at several points along the cen-
tral HPT and in extrathyroidal tssues with most study to date

focused on the PenraBDE misture, BDE-47, and BDE-209.

www.landesbioscience.com
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dosed through the diet with a mixture of 13

PBDE congeners (c.g., BDE-28, -47, -99, -100,
-153, -154, -209) at 2.5 ng/g and 25 ng/g per congener for 56 4.9
In fathead minnows, dietary exposures to BDE-47 at 2.4 and
12.3 pg/breeding pair-day for 21 d clicited depressed total T4
{T'T4) bur not total T3 (TT3) that was accompanied by elevated
mRNA transcripts encoding TSHR in the pituitary of low dose
fish.B% In addition, clevated and reduced levels of mRIMNA tran-
scripts encoding TRa and 7R, respectively, were detected in
the brain but not the liver, suggesting that the adult fish brain
may be a sensitive target of BDE-47.5% These results in minnows
and trout are consistent with observarions

in European flounder
(P flesusy whereby declines in circulating TT4 with no change
in TT? were detected after a 101 d dietary exposure to the
PentaBDE commerdial mixture purified to remove polybromi-
nated dibenzo-p-dioxins/dibenzofurans (PBDDs/ Fs).
Reductions in whole fish T4 have also been measured in
zebrafish larvae subjected to waterborne exposures of the
PentaBDE commercial mixtare5 In some divergence, however,
this same research group measured elevated whole fish T4 and
T3 in zebrafish offspring exposed to PentaBDE at the same dose
as their previous study (Yu et al,, 2010) but by a different expo-
sure route {(maternal) and longer duration (5 mo). The opposing
effects of PentaBDE on TH levels thar were measured in the Yu
et al. (2010--11) zebrafish work demonstrate potentally impor-
tant differences in PBDE impacts an vertebrate thyroid signaling
that may be influenced by the pathway and duration of exposure
{e.g., aqueous, short-term vs. maternal, chronic). BDE-209 and
the PentaBDE mixrure also have been found to enhance the rela-
tive mRINA expression of genes encoding diaf and dio2 in zebral-
ish larvacas well as thyroidal genes encoding the sodium iodide
symporter (NIS), thyroglobulin (TG) and other tmnscmpt}c

8\ 106,157

factors regulating NIS and TG expression (INkx2.1a, Pax
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Table 3. PEDE effects on thyroid endocrine systems of teleost fish

Species Treatment Route Dose/Duration Effects Observed Ref
T mRNA transcripts for CRH, TSHB, Pax8,
X . . ; ) . Nkx2.1, NIS, Tg, dio1, din2, tra, 1
Zebrafish {Larv.) BDE-209 Aqueous 0,0.08,0.38, 1.92 mg/l; 14 dpf | TTR mRNA transcripts; 1 T3 (0.38, 1.92 106
mg/l}, T4(1.92 mg/B
Zebrafish Uuv) BDE-47 Diet 100 n‘g/g; ()‘5—'1—mg food/ No changein TTR, d‘tm,TSHB mRNA 95
fish-d; 20-60 dpf transcripts
Zebrafish (Larv) 5-0OH-BDE-47 Agqueous/WISH 1,10, 100 nivi; 4 - 22 hpf f dio? m&RNA m‘bram perlve?rltrlcu‘lar zone; 153
T dio 3 in pronephric duct
Rainbow trout {0, . o . p iv b » 1 TT4 (1000 ng/g bw); | F13 (all doses); | .
mykiss Juv.) BDE-209 1P Injection 50 - 1000 ng/g bw/day; 21 d FT4 (100, 200, 500 na/g bw) 93
European flounder PentaBDE (DE- . . 0r0.014 ~iog+~1z-moo Kord .
_ . Spiked sediments, TOC + ug/g lipid; 101 d | plasma T4 {flounder)
{P flesus Adu.); 71 purified of K R X ., 96
Zebrafish Uuv) PBDD/Fs) Diet {flounder} T plasma TH, | larval survival; (zebrafish)
~e ' " 0-500 pg/l; 30 d {zebrafish)
1 T4 {no change in TT3); T mRNA
" o bl H P P i v ripsie fove TCLI 7 5Y t srryales
7 Fathead rr.nnnovt‘/ i BDE-47 Diet 2.4 pgfpair/ day; 12.3 ug/palr/ | transaripts for TSHB ({GW dose), tra {fernale 154
{Adu. breeding pairs) day; 214 brains);
| trf mRNA transcripts {(both sexes, brains)
Chinese rare 1 dio2, NIS mRNA transcripts {larvae)
minnow {G. rarus; BDE-209 Agueous O0-10pg/d;21d B AN X p ‘ 155
E tro, dio2, NIS mRNA transcripts {adults)
Adu, Larv.)
BIE-28, 49, -47, -99 potent inhibitors of
Gilthead sea bream PBDEs, . . T3 binding to TTR; IC 5< <713, 74 -
{S. aurata; Adu.) &-OH-BDE47 i vitro 0-10pM; 20 6-OH-BDE-47 moderate inhibitor; I, s> 18
13,14
} Dio activity {T4-ORD and T4-IRD) by 74%
Thyroid histology: Over-stimulation, injury
" : ; . P . : : g : R
Fathead minnow BDE-209 Diet 10 ug/g foo.d at 5% bw/day; (thsck.ened foi.hcuiar ep{theiium,nsrregtiiar 61
{Juv.) 28dwith 14 ddep follicle outlines, colloid depletions, 1
inflammatory cells)
Liver alterations: vacuolated hepatocytes
L T4 (53%) and TT3 (46%) at low dose
TT4 (59%) and TT3 (62%) at bi §
L 95 ng/g ww food and 10 pug/g LT (5,9 ! .md.” (62 e k_ngh dose
Fathead minnow . e i brain Dio activity ~65% .
BDE-209 Digt ww food at 3% bw/day; 28 d " i . . } 62
{Adu. males) o T mRNA transcripts for diot, dio2, tra, tr3
with 14 d dep P ) .
{§ Inliver), mci8, catplct, catpai(l in
fiver) in brain and fiver
0, 2.5, 25ng/g dw food at . A
3 E | F T4 j %) {loy S
Lake trout (S , 13 PBDE . et 1.5% bw/day; 56 d; 112 d | FT4 (low, high dosg,, LFT3 (low dose 59
aamaycush; Juv.) congener mix : only)
depuration
| whole fish T4 {13 not measured)
X PentaBDE . . 1 mRNA transcripts for CRH, TSHE, NIS,
Zebrafish {Larv.) (DE-71) Aqueocus 1,3, 10ug/l; 14d Tg, Pax8, Nioc2.1, dio, dio?: “TTR mARNA 157
franscripts
. ~ t plasma TT4 (no ATT3) (parents, ELISA);
o;t;j!r:: p)lg;’!((zz:;ir;t;::;i)‘ | mRNA transcripts for CRH, TSHB (parent
Zebrafish (Adu, PentaBE Aqueous 5 nfiaﬂ fagsequI maf‘ura;tior; brain) 158
offspring) (BE-71) 4 N o - t whole fish T4, T3; altered HFT axis >
{parents), 5 and 10 dph L . )
. L mRNA transcripts {offspring w/w/o DE-71
{offspring) \
eXposUre)

BTEB = basic transcription element-binding protein; CRBP = celiular retinal binding protein; CRH = corticotrophin releasing hormone; CSF = cerebral
spinal fluid; dep = depuration; dpf = days post fertilization; dph = days post hatch; dio = lodothyronine deiodinase; FT3 = free trilodothyroning; F14 = free
thyroxine; HDT = highest dose tested; hpf = hours post fertilization; HPT = hypothalamic-pituitary-thyroid; MBP = myelin basic protein; PBDD/f = polybro-
minated dibenzo-p-dioxins/dibenzofurans; NiS = sodium/iodide symporter; Tg = thyroglobuling TH = thyroid hormone; TOC = total organic carbon; TR =
thyrold receptor; TSH = thyroid stimulating horrmone; TT4 = Total thyroxine; TTR = transthyretin, WiSH = whole mount in situ hybridization.
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There has been only limited thyroid-related study in fish w
date focused on the OH-BDEs, Recent work in our laboratory
using whole mounc in situ hybridizadon (WISH) measured sig-
nificantly upregulated mRNA expression of Aisf, but not die2
or die3, in the periventricular brains of 22 hpf embryos exposed
w0 the hydroxylated metabolite 6-OH-BDE-47. An increase in
dio3 mRINA expression was also detected in the pronephric duct,
which is the earliest form of the kidney in vertebrates and con-
stitutes the central component of the excretory system. Thus,
this study demonstrated that effects of 6-OH-BDE-47 on the
developing zebrafish thyroid may elicit localized and age-spe-
cific eranscriptional responses that then potentially contribute
o downstream effects on neurological, renal, and reproductive
development. To better understand the implications of these
findings, additional daea are needed o clarify the cellular and
tissue distribution of Dios during ontogeny of the fish brain. In
the mammalian brain, Dio 2 is expressed in glial cells (astrocytes,
tanycytes), which could play a role in transporting and maintain-
ing T3 supplies to neurons.’

BDE-209 Thyroid Dysfunction

BIDE-209 reduced circulating levels of free T4 and T3 in
carly life-stages of rainbow trout™ with declines in whele fish
T4 also reported in zebrafish larvae exposed aqueously o BDE-
209.1¢ 1n addition, an increase in die2 mRINA transcripts have
been measured in the larvae of Chinese rare minnows exposed
to BDE-209 with a decrease in dio2 transcripts measured in the
brains of adules minnows.!”® Recently published data of ours has
shown TH regulation and signaling in juvenile and adult fathead
minnows to be disrupted by low dose exposures to BDE-209.
Specifically, in juvenile fathead minnows, compared with vehicle
controls, the activity of Do enzymes (T4-ORID) and T4-IRD))
declined by -74% in fish dosed with 9.8 pg/g ww food at 3%
bwiday for 28 d.% This extrathyroidal perturbation was accom-
panied by evidence of thyroid follicle hypertrophy indicative of
over-stimulation and injury. In adule male fathead minnows,
BIDE-209 caused a > 53% and > 46% decline in circulating otal
T4 and T3, respectively, upon a 28-d exposure to low doses of
BDE-209 at -3 and 300 ng/g bw-day.% Depressed levels of circu-
lating THs were accompanied by a 65% decline in Dio actvity
(T4-ORDY) in the brains of treated fish ar both BDE-209 doses
tested. This hy pothyroid response in BDE-209 exposed minnows
was accompanied by possible localized compensatory signaling,
including increased T4-ORD activity in the liver and transient,
tssue-specific upregulation of genes encoding several important
thyroidal proteins (Table 4). However, similar to results in min-
nows exposed to BDE-47% this study suggested that the fish
brain may be particularly sensitive to BDDE-209 based on severe
reductions in brain Dic acdvity (T4-ORD) and potentially
muted adaptive responses of the brain to reduced TH levels.
Consistent with observations in the brains of adult fish, dara col-
lected in developing rodents suggest weak adaptive responses of
the brains of younger mammals to TH insufficiency caused by
Jow level chemical exposures.1% Additional work is needed to
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better understand how tissues, especially the brains, of develop-
ing and adult animals adapt or not o contaminantinduced TH
insufficiency and whether this ameliorates downstream apical
endpoints.

Mechanisms of PBDE Thyroid Disruption

The vertebrate thyroid system maintains normal physiologi-
cal functioning by responding to endogencus and exogenous
perturbations with changes in TH production from the thyroid
and through changes in the capacity and sensitivity of periph-
eral dssues, Such integrated compensatory responses at the cen-
tral HPT and in peripheral target tissues make it challenging w0
evaluate mechanisms of action for chyroid disruptors like PBDEs.
Nonetheless, several mechanisms appear w play a role in the
thyroid perturbations measured in fish (and other vertebrates)
exposed 0 PBDEs including: interference with Dio enzyme
activity/expression: enhanced metabolism and climination of
THs; altered expression and activity of plasma transporters and
membrane bound transporters; and alrered genomic signaling.

Interference with Dio Enzymes

One mechanism that might be contributing to thyroid pertur-
bations in fish and other vertebrates could involve PBDES inter-
fering with the expression and activity of Do enzymes. PBDEs
may be acting as competitive substrates for Dio enzymes or
otherwise altering the expression and activity of these enzymes.
As discussed, altered mRINA expression and enzymatic activ-
ity of some Dio isoforms has been observed in fish exposed 1o
BDE-209°00255 and 6-OH-BDE-47% as well as in rodents
exposed to PentaBDE" and human microsomes incubated with
5 -OH-BDE-99 and 2.4.6-TBP¥ However, it remains unclear
whether PBDESs (or OH-BDEs} can bind directly to Dio enzymes
or whether they may elicit other allosteric effects thart affect the
capacity of Dios to mediate TH reguladon.

induction of TH Metabolizing Enzymes

Another hypothesis for PBDE-induced thyroid disruption
is that PBDE detoxification responses may induce the expres-
sion and/or activity of TH catabolizing enzymes. In some sup-
port of this hypothesis, studies have measured increased mRINA
expression of TH-conjugating UDPGT and SULT enzymes in
rodents exposed to BDE-47" and the PentaBDE commercial

. 42 16
mixture 4816

In these studies, declines in circulating levels of T4
from PBDEs were linked to enhanced glucuronidation associated
with UDPGT inductions.!*®531%% Ocher studies, however, have
shown little to no change in UDPGT levels in rodents follow-
ing exposure to PBDEs despite decreased T4 levels in circula-
tion, #9165 although increased mRMNA expression of UDPGT
transcripts has been observed in some of this work.'¥ In contrast
to the rodent data, limited evidence in fish has shown declines in
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Table 4. Relative expression of genes encoding deiodinase {dio) enzymes, nuclear thyroid receptors (1), monocarboxylate transporters {mct), and organic
anion transporter polypeptides {oatp) in brains and livers of adult male fathead minnows exposed orally to BDE-209 and the positive control 6-propyl-

2-thiouraci] (PTU) for 28 d with a 14-d depuration

Day 14

Day 28 Day 42

Gene target Treatment

Brain

Liver Brain Liver Brain Liver

diol BDE-2092 Low Dose —

BDE-209 High Dose —

PTUPosCrt F

dio2 BDE-202 Low Dose

BDE-209 High Dose kR

PTU Pos Cird —

tro BDE-209 Low Dose —

BDE-209 High Dose 117

PTU Pos Cird —

B BDE-209LowDose | —

BDE-209 High Dose —

PTU Pos Cirl —

mct8 BDE-209 Low Bose

BDE-209 High Dose 1T

PTU Pos Ctr T

oatpict BDE-209LowDose | —

BDE-209 High Dose —

PTU Pos Cirl —

oatp2al BDE-209LlowDose |

BDE-209 High Dose T

PTUPOsCtri |

“Relative mRMNA transcript abundances of genes not affected by BDE-209 or PTU: dio3, mct10, oatplfl, catpif2, oatp2bl,caip3al, oatpda, and oatpsal.
Statistical significance evaluated within sampling day with a one-way ANOVA and Tukey's test; one arrow = P < 0.05; two arrows = P < 0.01; three arrows =

P < 0.005.

mRNA transcript abundances of some UDPGT isoforms suggest
ing that PBDEs may be acting as TH mimics that then downreg-
ulate the expression of these TH metabolizing enzymes in PBDE
exposed fish.21"

Altered Expression/Activity of Plasma and Cellular
Transporters

Few studies have explored the role of plasma and membrane
bound transporters in PBDE metabolic detoxification pathways
and in contributing to or ameliorating PBDE effects on TH sig-
naling.'*® OH-BDE metabolites produced in rat liver microsornes
enriched with CYP2b (i.e., PB-induced)} have been found to com-
pete with THs for binding to the plasma transport protein TTR,
potentially leading tw greater elimination of TH and hypothyroid-
ism. ¢ Likewise in a recombinant sea bream TTR assay, several
parent PBDEs (BDE-28, -49, -47, -99) were shown to be potent
inhibitors of T3 binding to TTR, suggesting competitive interfer-
ences, while 6-OH-BDE-47 had less affinity for sea bream TTR
than T3 or T4.¢ Other studies have also used biosensor screening

methods to show that the OH-BDEs may bind 1o TTR and TBG
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with high potency. More recently, newly designed fluorescent
probes and competitive binding assays have shown that the bind-
ing of OH-BDEs with TBG and TTR increases with bromine
number and OH position (i.e., 3-merg OH).1®

In addition o plasma transport, a few studies have explored
PBDE effects an cell membrane bound transporters of TH. Our
recently published data in fathead minnows measured upregu-
lated mRINA transcripts encoding mct8 and earpicl in the brains
and livers of fish exposed o BDE-209 (Table 4).%* As observed
with dio transcription, upregulated mRINA expression patterns
of these transporters in minnows exposed to BDE-209 may be
indicative of additional compensatory responses to hypothyroid-
ism as metS and oazplcl are specific and active transporter of THs
in fish'*"* and mammals”! Only a limited number of the
OATP wransporters have been characterized in vertebrates with

169

recent work in zebrafish'™ and fathead minnows'® o clarify their
tissue distribution and function. Some OATPs have been found
to be potentially important PBDE transporters. BDE-47, -99,
and -153 have been shown to be effective substrates for human
OATPIBL, OATP1B3, and OATP2BI expressed in Chinese ham-
ster ovary (CHO) cells.”? OATPIBI and OATPIB3 were found
to transport BDE-47 with the highest affinicy, while QATP2B1

Volurme 2

ED_002435_00006144-00080



Downloaded by [104.186.14.151] at 15:31 18 September 2015

was found t transport all three tested congeners with simi-
far affinities. Using human embryonic kidney cells transienly
expressing mouse hepatic OATPs, this same rescarch group also
measured that OATP1ad4, OATP1b2, and OATP2bl were able
to bind and transport BDE-47, -99, and -15:
these results, upregulared mRMNA expression of genes encoding
OATP1a4, which transports THs, bile acids, and xenobiotics, was

3 Consistent with

also detected in young rats exposed to PentaBDE."® PRDEs have
also been shown to affect the Phase 111 heparic efflux transpore
ers, P-glycoproteins (i.c., Pgp; Mdrl) and multdrug resistance-
associated proteins (Mrps) in rodents. Pgp and Mrp transporters
are members of the ATP-binding cassette (ABC) superfamily, are
regulated by AhR, CAR, and PXR, and play important roles in
the efflux of xenobiotics and THs into the bile for elimination.

Binding to Thyroid Receptors

Limited evidence in fish and other vertebrates supports that
PBDEs may, in part, be mediating effects on the thyroid by alter-
ing TR expression and signaling, The transcriptional activity of
nuclear TRs is thought to be mediated by both the presence and
absence of T3 due to its ability w bind o TRE regions of regu-
lated genes in both the presence and absence of ligand. As in other
vereebrates, two genetically distinet receptors TR and TR have
been identified in teleost fishes, including zebrafish, 77 floun-
der {P. olivaceus)'™; goldfish,”’ fathead minnows,”®"”® Nile tila-
pia (O. miloticus),*® and Atantic salmon.*® Additional receptor
subtypes with the capacity o bind TH have also been identified
attributable to gene duplication and alternative mRINA splicing.
Two tra genes, thraa (original) and #hraé (duplication) have been
described in zebrafish with the #hras gene shown w encode two
protein variants, TRaAT and TRaAT-2.95%2 Two TR isoforms
180 While TR variants aris-

ing from TRa and TRE have also been described in other verte-

have also been identified in teleosts.)”™

brates, including humans, the general structure and functdon of
TRs appears well conserved across vertebrates, which has been the
topic of several reviews. 15

Quesdons remain, however, concerning whether and how
parent PBDEs and their OH-BDE metabolites interact with and
bind w0 TRs. For instance, BDE-47 was reported to not inter
act as either an agonist or antagonist with TRB1 in an in vitro
binding assay and did not interfere with TRB-responsive gene

8¢ However, altered expression in thyroid-responsive

eXpression.
genes was observed in the brain and livers of rodent pups exposed
perinatally to BDE-47, suggesting that BDE-47 operated through
alternative mechanisms to TR signaling. Studies in rar pituitary
GH3 cell proliferation assays have shown BDE-127 and BDE-185
o be TR agonists while BDE-206 was a TR antagonist,!#1#2158
Cell based assays have shown that some OH-BDEs, including
3-OH-BDE-47, can inhibic T3 binding to TRs by antagonizing
the receptor, whereas several other parent PBDEs and OH-BDEs
have shown no TR affiniey 7 Another study showed TR antag-
onistic actvity for BDE-209, -153, -154, -100, and PentaBDE.
Limited evidence has shown some OH-BDEs to behave as weak

192194

TR agonists.

It has been suggested thar hydroxy moieties
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in the 3 or 4 position of the phenyl ring along with twe adja-
cent bromine substitnents are necessary for OH-BDE o bind o
TRs.!™ In addition, recent molecular docking assays have shown
that OH-BDEs may have varied interactions with TR bind-
ing pockets depending on the degree of bromination with lower
OH-BDEs (e.g., 6-OH-BDE-47, 5-OH-BDE-47) showing weak
TR agonism while higher OH-BDEs (e.g., 3-OH-BDE-100,
3"-OH-BDE-154) antagonized TRs."* Taken rogether, data on
TR binding of PBDEs and OH-BDEs continue to be inconsis-
tent and have demonstrated both antagonistic and weak agonis-
tic activities toward TRs, as well as no interactions, that may be
attributable to hydroxylation and bromination patterns thatinflu-
ence binding geometries with the receptor.

PBIDEs also may alter patterns of TReresponsive gene tran-
scription, although this remains understudied. For instance,
reductions in relative mRNA transcript abundances of brain
transcription element binding protein (BTEB) were measured in
adult fathead minnows exposed to BDE-47.5% The downregulated
expression of BTEB, which is a thyrcid-responsive transcription
facror involved in neurogenesis, was accompanied by declines in
circulating T4 and reductions in 223 gene transcripts in the brains
of treated minnows, suggesting that hypothyroidism in BDE-47
treated fish may elicit downstream effects on neurogenic capacity
in adules. Similarly, in primary rat cerebellar granule cell cultures,
BDE-99 was found to disrupt rraf and tro2 mRINA transcript
abundances, alter TR-responsive gene transcription (e.g., brain-
derived neurotrophic factor), and increase the production of reac-
tive oxygen species.”” Finally, a study with CV-1 cell cultures
measured suppressed TR binding with TREs through the DNA
binding domain (vs. between THs and TRs) upon exposure
several PBDEs and OH-BDEs, with BDE-209 showing the greas
est suppression at the lowest dose™ The suppressed TR-TRE
binding was then shown to inhibit TH-dependent dendrite arbo-
rization of cerebellar Purkinje cells, suggesting TR-TRE mediated
impacts on PBDE neurotoxicity,

Recently, a second potential binding site for T3 and T4 was
suggested in the ligand binding domain (LBD) of TRa ¢, This
second binding site was identified on the surface of the TRa LBD
in the same region where the F-domain (i.c., additonal C-terminal
amino acids) is located in some species. While human TRs do
not appear to have F-domains, it has been idendfied within the
TRaAl isoform of zebrafish where it has been shown to constrain
transcriptional activity by altering TR coactivator recruitment.’®
Thus, one hypothesis put forth is that this second binding site
within TRa may serve to suppress TR activation when elevated
concentrations of TH are present.””® While more work s needed,
this second binding site could also play a role in mediating how
environmental contaminants like PBDEs interact with TRs and
alter the functioning of these nuclear receptors.

Neurodevelopmental Toxicity
Limited evidence of PBDE effects on neurodevelopment

of fishes has been cbserved in carly life stages of fish (zebraf-
ish typically) for a subset of PBDE congeners. Specifically,
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Table 5. PBDE neurodevelopmental/developmental malformations measured in teleost fish

Species Treatment Route

Dose/Duration

Effects Chserved Ref

Zebrafish {Larv.) BDE-47 Aqueous

hpf

0,1.25,5, 20 uM; 6-96

impaired motor behavior
| touch-responsg, swimming speed 200
Inhibited axon growth

Zebrafish (Larv.) PentaBDE (DE-71) Agueous

0,31, 68.7, 227.6 pg/l;
2-120 hpf

Altered behavior (light-dark stimulation)
t AChE activity, $ Ach; | mRNA transcripts for MBF, 197
at-tubulin, Shh

Zebrafish {Larv.) PentaBDE (DE-71) Parental

0.16, 0.8, 4.0 pg/l; 150 d

No effect on F1 hatching success, survival, or
malformations; decreased locomotor activity (fight-dark
stirnulation)

§ ACHE activity, | mRNA transcripts for MBP, GAP-43,
GFAP, o 1-tubulin, SYN2a; | protein levels of o t-tubulin,
SYN2a

198

Zebrafish (Adu.

PentaBDE (DE-71)
females)

Agqueous

045 g/, 9.6 ug/h; 60 d

§ retinyl ester protein; | CRBP mRNA transcripts (Gi); |
retinoids (eyes, ovaries, eggs); | CRBP mRNA transcripts 220
{liver, eyes}; | retinal dehydrogenase, } CYP26A (eyes)

Spiked

Zebrafish (Larv.) sediment

BDE-209

12.5 ma/skg; 4 - 192 hpf

Impaired motor behavior (ight/dark stimulation)
In sitico profiling: BDE-209 binding to neurologically
active cocaine esterase, AChE, SHTR2A, SHTR2C, SHTR3A,
and tubulin a 1A

Zebrafish (Adu.,

offspring) BDE-209

Agueous

0.001 - 1 puM; 150 dph
{Aduy; bred at 120 dph

Parent: | mortality {~44% high dose}; Neg ctrl mortality
~38%; PBDE bicaccumulation (congeners not specified)
Offspring: Delayed hatching, motor neuron 205
developrment, loose muscle fibers, slow locomotion;
hyperactivity (light-darl test)

Zebrafish (Larv.) BDE-47 Agueous

hipf

100 - 5000 pg/l; 3-168

Delayed hatching, reduced growth, dorsal curvature,
impaired CSF flow 202
Cardiac toxicity at 96 hpf (tachycardia, arrhythmias)

Zebrafish (Larv) BDE-49 Aqueous

4 - 32 i 5 and 24 hpf

Dorsal curvatures, cardiac toxicity {reduced heart
rate); neurcbehavioral effects (impaired touch-escape 204
responses)

Mummichog

(Larv., Juv) PentaBDE (DE-71)

Aqueous

0.001 - 100 pg#l; 0-7 hpf

Delayed hatching; No major deformities but tail curve
asymmetry; | activity; impaired fright response {Larv) %
impaired learning (Juv)

BDE-28,-47, 99,

afi )
Zebrafish (Larv.) 2100, -153, -183

Agueous

0.635 - 10 mg/l up to i
168 hpf

Swimming rate { (96120 hpf}, | (168 hpf)
i swimming rates (BDE-47; 168 hpf)
Developmental deformities (dorsal curvature at 120 hpf) 199
w/mortality (BDE-28, -47,-99,-100)
No effects w/BDE-153,-183

at-tubulin = neuron microtubulin protein; ACh = acetylcholine; AChE = acetylcholinesterase; BTEB = basic transcription element-binding protein; CRBP
= cellular retinal binding protein; CSF = cerebral spinal fluld; dep = depuration; dpf = days post fertitization; dph = days post haich; dio = iodothyronine
deindinase; GAP-43 = growth associated protein 43; GFAP = glial fibrillary acidic protein; HDT = highest dose tested; hpf = hours post fertilization; MBP =

myelin basic protein; Shh = Sonic hedgehog; 5YN2a = synapsinlia

neurodevelopmental abnormalites, including impaired normal
motor behavior and inhibited neuron growth and differentia-
tion, as well as morphological deformities have been measured

in zebrafish larvae exposed to: PentaBDEY 1798 3 mixeure of

BDE-47, -99, -100, -153, and -1831%%; BDE-47,200203 BDE-492%4,
and BDE-209% (Table 3).

PentaBDE Neurotoxicity
For instance, in 96-hpf zebrafish parentally exposed w the
PentaBDE mixture, several genes involved in central nervous

system development were downregulated, including al-tubulin,
synapsin la, and myelin basic protein.'™ This decline in mRINA
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expression was accompanied by reduced protein expression of
al-tubulin and synapsin Ha as well as reduced locomotor activ-
ity among treated larvae. In another study by this same research
group, the PentaBDE commercial mixture also caused a down-
reguladon in mRMA transcript abundances of sonic hedgehog
(Shh).* This suggests a possible contributory role for thyroid
dysregulation in some PBDE related neurodevelopmental toxic-
ity as the Shh pathway, as well as its coreceptors patched (Prc) and
smoothened {(Smo), have been shown to be regulated by THs in
embryonic forebrain signaling and development in mammals.?®
Only one study has examined neurotoxicity endpoints in a fish
species beyond zebrafish. This study, conducted in mammichogs
(F. heteroclitusy detected hindered behavior and learning ability,
as well as dorsal curvatures, in fish exposed to PentaBDE®
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BDE-47, BDE-49, and BDE-209 Neurotoxicity

In BDE-47 exposed zebrafish, delayed harching, neural
defects, and cardiac arthythmias were measured at 168 hpf in
farvae exposed to 5 mg/l of BDE-47.2 The cardiac toxicity and
dorsal curvature deformities observed in this study were coupled
with reduced flow rates of cerebrospinal fluid in neural tubes
and brain ventricles of the hindbrain. The reduced flow rates
of cerebrospinal fluid were postulated to be related to the dor-
sal curvatures that then possibly contributed to the measured
neurotoxicity. Dorsal curvarures, attenuated heart rates, and
impaired touch-escape responses were also measured in zebraf
ish larvae exposed to another tetra PBDE congener BDIE-49.%
Moreover, neurodevelopmental impairments, including delayed
hatching and hindered motor neuron development, loose muscle
fiber deformities and slow locomotion, and hyperactivity under
a light/dark stimulation test, have also been observed in zebraf-
ish larvae exposed maternally o BDE-209.°" These behavioral
findings with BDE-209 are consistent with another recent study
in which zebrafish larvae exposed 1o sediment spiked with 12.5
mg/kg of BDE-209 from 4-192 hpf experienced hyperactive
responses to light stimulation that may be linked to impaired
neurodeveloproent. Additional in silico binding assays in this
study also predicted BDE-209 binding with several human pro-
teins involved in neurological functioning, including: tubulin
alA involved in microtubule formadon; acerylcholinesterase
(AChE) involved in the breakdown of acetylcholine; SHTR2A,
SHTR2C, and SHTR3A, which are scrotonin receptor system

FONes; ’&ﬂd cocalne esterases.

Toxicity Mechanisms and Thyroid interactions

In mammals, like in fish, neurodevelopmental toxicity of

PBDEs is also an important toxicological endpoint of concern.
For instance, PBIDFs (BDE-47, -99, and -100) measured in
umbilical cord blood of women have been found to be correlated
with reduced performance of gestationally-exposed children

%7 Morecver, maternal

(aged 0--6) on mental performance tests.
prenatal and childhood PBDE exposures have been associated
with reduced attention, fine motor coordination, and cognidon
{declines in 1} scores) among a California cohort of Mexican-
American children.’ A substantial number of studies in rodents,
spanning different laboratories, have demonstrated also thar
PBDEs can elicit adverse neurobehavioral outcomes in early
development.*®*!° Recent in vitro work has even shown that the
prominent OH-BDE metabolite in humans, 6-OH-BDE-47, can
disrupt adult neurogenesis by inhibiting neuronal differentiation
and oligodendrocyte differentiation, proliferation, and survival
of primary cultured adult neural stem/progenitor cells isolated

213

from the brains of adult mice.” Other in vitro study has shown

that the hydroxylated metabolites of BDE-47 may disturb intra-

cellular calcium release

Some neurological deficits and aleerations measured in fish*™

191,214,212

and rodents have been accompanied by reductions in cir-

culating T4 and altered TH signaling, suggesting that one of the
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contributing neurotoxicity mechanisms may proceed through
PBDE interference with TH regulation and signaling. However,
PBDE neurotoxicity has been observed absent impacts on TH
regulation, suggesting other mechanistic pathways. Indeed, a
growing body of evidence suggests that PBDE mechanisms of
neurotoxicity may operate by several pathways chat include

disrupted TH signaling, altered cholinergic neurctransmis-

215,216, 191,214,217

stons ; impaired neuronal proliferation and plasticicy,
and oxidative stress.?®2 While the underlying mechanisms of
PBDE neurotoxicity are unclear, continued testing in fish would
be informative to better understand these underlying mecha-
nisms of PBDEs effects on the development and functioning of
the central and peripheral nervous systems of vertebrates.

Reproductive Toxicity

PBDE impacts on fish reproduction and reproductive devel-
opment have been evaluated in a limited number of studies and
congeners (Table 6). Studies that have examined PBDE effects
on fish reproduction have presented mixed evidence of reduced
fecundity, spawning, hatching success, and offspring survival
as well as impaired fertilicy, particularly among male fish, with
PBDE-induced alterations in spermatogenesis, declines in sperm
counts, and feminization possibly playing important roles.

PentaBDE Reproductive Effects

Reduced fecundity and larval survival have been measured
in zebrafish exposed orally to the PentaBDE mixture purified
of PRDDs/PBDFs.” Reducrions in larval survival in this and
other studies may be partly actributable w maternal transfer of
PBDEs to eggs, which has been shown in zebrafish and marine
medaka (O. melastigma) and could hinder normal developmental
progression.”»2? A study in zebrafish adults with the PentaBDE
mixture reported sex-specific alterations in the relative expres-
sion of genes encoding an array of reproductive hormones and
receptors along the HPG axis, as well as disruption in circulating
levels of E2, T, and 11-kero-restosterone in males.”? In a second
related study, this same research group also measured PentaBDE-
induced reductions in spawning, ferdilization, and hatching suc-
cess along with reduced larval survival and higher percentages of
male offspring.?! These reproductive impairments were accom-
panied by altered counts of spermatogonia, spermatocytes, and
spermatids in the testis of treated fish. In some contradiction,
however, this study reported an increase in the gonado-somatic
index {GSI} in treated males.

BDE-47 Reproductive Effects

With regard to constituents of the PentaBDE commerdial
mixture, most of the limited research to date that has stud-
ied PBDE impacts on reproduction has been conducted with
BIDE-47. Reduced spawning has been observed in adule fathead
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Table 6. PBDE reproductive alterations measured in teleost fish

Species Treatment Route Dose/Duration Effects Observed Ref
. e PentaBDE, . ) . . ..
Atlantic salmon (5. OctaBDE Diet 10 mgskg bw (d 1), 50 myg/ kg bw No effects on protein expression/activity of Vig, 75
salar; Juv.) . - d4y7d, 144 zona radiata, CYP1A
mixturas
{ /q; 0.5~ sh-d;
Zebrafish (Juv.) BDE-47 Diet 100 ng/g; 0.5-1 mg food/fish-d; No significant change in Vig mRNA 95
20-60 dph s
Gene bBxpression: Males: § GnRH, ERB (brain); {
FSHE, EHE (pituitary); T FSH-R, LH-B, CYP19a and
} CYP11a, 3B-HSD (testis); | ERa, AR, Vig (liver) /
PentaBDE 2,300, 500 ng/t {measured); 120 Females: { GnRH and | ERB (brain); | FSHB, LHB e
= ( = g > X . ) ‘
Zebrafish (Adu.) {DE-71) Agueou dpf and | GnRH-R {pituitary}; 1 38-HSD {ovary); § ERa, 223
AR {liver) / Sex hormones: | E2 {males (high dose
only)and females); 1T, 11-KT; ? T/E2 and 11-KT/
EZ {males}
PentaBDE 7 Reduced spawning, fc?rtshzati?n, hatching, larval
. . \ . 2,300, 500 ng/t {measured); 120 survival; TGS
Zebrafish (Adu) mixture Agueous R 224
(DE-71) dpf increased malformations and percentages of male
’ offspring
} male/female G51; “sperm count, motility
Zebraﬁsi‘f {Adui., BOE-200 Aqueous 0.0071 - 1 uM; ‘1£->O dph {(Adu}; bred Offspring: Delayed hatching, mnotor neuron 205
offspring) at 120 dph development, loose muscle fibers, slow
locomotion; hyperactivity (light-dark test)
. PentaBDE 3 ,
European f‘h:)_under.(F{ {DE-71 SPIkEd 00014 ijHM)QG Hg/g TOC + } ovarian aromatase (CYP19) activity (flounder); |
flesus; Adu.); Zebrafish . sadiments, ug/g lipid; 101 d (flounder) . . 96
Uuv) purified of Diet 0500 pg/l; 30 d (zebrafish) fecundity (zebrafish)
‘ PBDD/Fs) Be7E =
Fathead minnow - 2.4 ug/pair/ day; 12.3 ug/pair/ ; . :
(Adu. Breeding pairs) BDE-47 Diet day; 21d | mature spermatozoa 154
Chinese rare minnow . .
(G. rarus: Adu,, Larv) BDE-209 Aqueous O-1oug/d 21d | spermatogenesis 155
Spawning ceased by 2-wks of exposure
Fathead minnow . . 28.7 + 1.6 pg/pair Reduced fecundity
(Adu. Breeding pairs) BDE-47 Diet (bicencapsulated artemia); 25 d > 50% reduction in sperm counts 108
No change in GSI, LSE reduced condition, males
Fathead minnow 95 ng/g ww food and 10 ug/g ww | | (51 at both low and high dose that extended into
(Adus, males) ’ BDE-209 Diet food at 3% bw/day; 28 d with 14 14-d dep 52
’ - ddep PTU positive control did not affect GSI
All three PBDESs transferred to eggs (BDE-28 > BDE-
Zebrafish {ermbryos) BDE-28, BDE- Diet, 10 and 100 nmol/g food at 2% 183 » BDE-209) 531
Y 183, BDE-209 Maternal bw/day; 42 d Egg/maternal fish concentration ratios significant >
1.0 for BDE-183, BDE-209
Rainbow trout {(Adu. . . e - No effects on embryonic survival at first cleavage -
Males) BDE-47 Diet 55 pgrkg-day; 17d {0.5 dppht} or during eye development {19 dphi) 225
. Disturbed glucose homeostasis (PBDE mix, BDE-
Atlantic salmon (uv BDE-47,-153, 153); Altered cell proliferation processes (FBDE mix)
B T -154 (alone | Hepatocytes 0.01 - 100 uhi 48 h o o P N processes § T 226
males) and mixture) Estrogenic responses {1 Vig; ZP3 mRNA) in males
- {BDE-47, PBDE mix)
. . . i Maternal transfer of BDE-47
ot = airs: 1.3 0. ay; :
nﬁj;‘:f;;d::g:i) BDE-47 M;Zr’l_ﬁ Breeding m”s‘ ; (‘;’ 0.2 pg/day; 1 BDE-47 to 25 ng/fegq (day 18) 222
gma; e ¥os © Maternal concentrations BDE-47 < males
1. 3, 10 pg/! {parents and | hatching rate
Zebrafish (Adu., PentaBDE Parental, offspring} + {parent alone) 5 min t malformation rates to offspring exposed 158
offspring) (DE-71) Agueous to sexual maturation (parents}), 5 parentally; DE-71 exposures by parental transfer ’
and 10 dph {offspring) plus directly to offspring worsened malformations

11-KT = 11-keto-testosterone; 3B-HSD = 3-B-hydroxy steroid dehydrogenase; CRH = corticotrophin releasing hormone; CSF = cerebral spinal fluid; dep =

depuration; dpf = days post fertilization; dph = days post hatch; E2 = estradiol; ER = estrogen recepior; FSH = follicle stimulating hormone; FSH-R = follicle
stimulating hormone receptor; GSI = gonado-somatic index; GnRH = gonadotropin releasing hormone; HDT = highest dose tested; hpf= hours post
fertilization; LH = luteinizing hormone; LH-R = luteinizing hormone receptor; PTU = 6-propyl-2-thiouricil; t = testosterone; TOC = total organic carbom; Vig
= vitellogenin; ZP3 = zona pellucida 3
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minnow male/female pairs exposed orally to -14 pg/fish of BDE-

47 for 25 d, with reproduction completely ceased within 10 d of

exposure.’” The impaired reproduction may have been atwribue
able to selective roxicity in male fathead minnows as decreased
mature spermatozoa and reduced condition factors were noted
in these fish. In another study, declines in mature spermarozoa
also were measured, but with no effect on fecundity, in adule
male fathead minnows exposed orally to ~6 pg/fish-day of BDE-
47 for 21 4. BDE-47 also elicited no effects on the morpho-
logical development of offspring from adult male rainbow trout
exposed to 55 pglkg-day of BDXE-47 for 17 d and then bred with
untreated females.”” These data suggest chat other components
in the PentaBDE mixture in addition to BDE-47 may play an
impaortant role in affecting fecundity, embryonic development,
and adult male reproducton.

PBDE Effects on Male Fish Reproduction

Some studies have suggested a role for PBDEs in the femi-
nization of male fish. Specifically, dose-dependent increases in
relative mRNA wranscripts encoding vitellogenin (Vig; egg yolk
precursor protein) and zona radiata protein (eggshell protein)
were measured in hepatocytes of juvenile male Atlantic salmon
(8. solar) exposed to BDE-47 and a PBDE mixture (BDE-47,
153, -154).2%¢ However, some of these in vitro findings have
not been reproduced with in vive studies of juvenile Adantic
salmon exposed to the PentaBDE mixture” or in zebrafish lar-
rae exposed to BDE-47," whereby no change in the expression
of Vig mRNA transcript abundances were detected. Thus, while
the in vitro evidence is limited because it may not account for
the extensive and coordinared interactions among cells and ds-
sues, conversely the in vivo research conducted to date targeting
PBDE effects on male fish reproduction has only been in two
species, targeting largely transcriptional changes in immarure
animals for just a limiced number of genes. In addition, very little
is known about the potental reproductive effects of BDE-209
in fishes but limited evidence suggests alterations to some repro-
ductive endpoints in male fish. Specifically declines in spermato-
genesis were abserved in male Chinese rare minnows (G, rarus)
exposed aqueously to BIDE-209, and reductions in the gonadal
somatic index (GSI) have been measured in adult male fathead
minnows exposed to BDE-209% wich evidence of declining

sperm counts in some of this research.®”’

aken together, more
research is necessary to understand whether PBDEs play a role in
cliciting potential feminization and reproductive impairments in

male animals.

Toxicity Mechanisms and Thyroid interactions

Fish have evolved diverse reproductive strategies that are closely
integrated with gonadal differentiation and functioning and
demonstrate sensitivity to external environmental cues, such as
photoperiod and temperature. While there are important differ-
ences between reproduction in mammalian and non-mammalian

www.landesbioscience.com
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vertebrates, reproduction in jawed vertebrates is controlled by the
HPG axis and the structure of this endocrine systern is highly
conserved. It is possible that there could be shared pathways of
PBDE impacts on mammalian and non-mammalian vertebrate
sex steroid synthesis and gonadal development and funciioning.
fe is also possible that there may be important species- and sex
specific differences in reproductive responses o PBDEs as cur-
rent studies are limited by teleost species and focused largely on
altered reproduction in males with less known abour reproduc-
tive effects in female fish.

For instance, in female fish, declines in ovarian aromatase
(CYP19) activity were measured in European flounder (2. flecus)
exposed to the PentaBDE mixture purified of PBDDs/PBDFs,
suggesting that PBDEs may be altering pathways of steroidogen-
esis in female fish”¢ Somewhat consistent with these findings,
in vitro testing also has shown potential inhibitory effects of
OH-PBDEs on CYP1Y and CYP17 in human placental micro-
somes?” and human adrenocortical carcinoma cells.”*®2?” Several
OH-BDEs have also been found to bind with the estrogen recepror
(ER) with the general trend that pare-OH metabolites displayed
the highest affinity for ERs wich the lower OH-BDEs (14 bro-
mines) tending to act as weak agonists while higher OH-BDEs

185’,2_’;0,231] i

{4 bromines or more) had antagonistic properties. addi-

tion, rodent studies™ % and cell-based assays'®"*? have shown
that some PBDFEs (PenaBDE, BDE-47, -99, -100, and -209)
may be estrogenic and/or induce feminization in male animals by
anti-androgenic pathways. In humans, epidemiclogy studies have
measured PBDE associations with: cryprorchidism®?; carly onset
of menarche®; decreased testosterone, luteinizing hormone
(LH), and follicle stimulating hormone (FSH) in adule men;
increased E2 in 3-mo old boys (BDE-1541*; and decreased
sperm counts and testis size in young adules (BDE-1 53}.24 Taken
together, there appear to be important common mechanisdc
pathways of PBDE effects on vertebrate reproduction that are not
well understood at this time.

While some evidence points to PBDEs affecting the repro-
ductive health of fish and other vertebrates, few studies have
exarnined interactions berween thyroid and reproductive func-
tioning. Thus, questions remain as to whether PBDE effects on
reproduction are being mediated directly and/or indirectly by
altered TH regulation. In mammals, both hypothyroidism and
hyperthyroidism have been shown to impair reproductive physi-
clogy and lower fertility.” An early review described important
interactions between TH regulation and reproductive physiclogy
in fishes.” More recently, studies in goldfish (C. awrarus) and
zebrafish suggest that THs may have important inhibitory effects
on teleost reproductive functioning at different levels of the
HPG axis, including by: inhibiting pituitary LH and FSH; and
reducing steroidogenesis and gonadal aromatase expression. 2%
Recent evidence, in some contrast, also supports a stimulatory
role for THs in the proliferation of sertolli cells and spermatogo-
nia in zebrafish testes, >

Little is known about the role of PBDE-induced TH disrup-
tion in potendal reproductive toxiciey in fishes or other verre
brates. One hypothesis is that PBDEs could be mimicking THs

that is in turn leading o altered steroidogenesis and steroidal
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hormone regulation among exposed animals, although this has
not been examined. However, in data collected in male farhead
minnows exposed orally to BDE-209, the model goitrogen 6-pro-
pyt-2-thiouracil (PTU), which was used as a positive control,
reduced TH levels as predicted but had no effect on the GSI,
unlike BDDE-209 which caused substantial reductions in the GSI.
These results suggest thar BDE-209 reproductive effects in male
fish could be acting through thyroid-independent pathways.®
Still chough, it remains unclear from the limited data whether
PBDE effects an reproduction are mediated by directly impairing
HPG functioning or whether these effects are also mediated in
cross-talk with perturbations of the thyroid.

Research Needs and Conclusions

Asubstantial body of evidence suggests that PBDE metabolism
in teleost fishes proceeds through reductive debromination path-
ways. Studies report both the presence and absence of OH-BDE
metabolites forming in fish, and given their bicacdvity, it would
be informative to investigate further whether these metabolites
form in vive in fish. It might be expected that the OH-BDEs, if
they are being produced by fish, would be found at higher con-
centrations in the blood and highly perfused rissues like the liver
where they are formed mostly. Related to this, questions remain
as to the identity and kinetics of the enzymatic biotransformation
pathways of PBDYE metabolism in fish wich some indirect evi-
dence implicating Dio enzymes. In mammals, PBDEs appear to
operate predominantly through AhR-independent toxicity path-
ways. However, the extent to which these pathways (e.g., CAR,
PXR) are operational in fish exposed to PBDEs is less clear, but
potentially relevant w the hypothyroidism observed given their
additional role in TH metabolism and elimination.

PBDEs have been shown now to disrupt TH regulation and
signaling in several teleost species with mechanisms of acdon
that proceed through multiple pacthways depending on the con-
gener, fish life stage, and tissue type, including by: enhancing
the metabolism and elimination of THs; binding competitively
with plasma and membrane bound transporter proteins; altering
interactions of 13 ligand with nuclear TRs; disrupting Dio activ-
ity; and altering the transcription of genes involved in TH pro-
duction, transport, and genomic signaling. Despite expanding
knowledge of these thyroid disruption mechanisms, there contin-
ues to be a limited understanding of PBDE impacts on thyroid-
response gene expression and downstream apical endpoints of
concern, including neurodevelopment and reproduction. PBDE

Y
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effects on neurological, developmenral, and reproductive physiol-
ogy have been indicated across fish and other vertebrates exposed
o PBIDESs, suggestive of common toxicity pachways that remain
unclear. Related to this, additional work is needed ro understand
whether there exist localized compensatory or adaptive physiolog-
ical responses of the thyroid system o TH insufficiency caused
by PBDE exposures. Continued study of these apical endpoints
of concern in fish would be helpful for not only understanding
potential toxicities in free ranging fishes, bur also would contrib-
ute to understanding PBDE mechanisms of toxicity in humans.
The thyroid endocrine systems of fish and mammals are well
conserved and similar in structure and funcedon, supporting the
relevance of fish as models for understanding PBDE effects more
broadly across vertebrate taxa. However, there are differences
between mammalian and non-mammalian thyroid signaling thar
could have implications for using fish as models for evaluating
PBDE thyroid toxicity in higher level animals. One important
difference is that unlike in mammals, the fish thyroid may not to
be centrally directed through the HPT but rather appears to rely
strongly on localized peripheral tissues for T3 production and
regulation. There is evidence for chis dominant peripheral signal-
ing in mammalian models as well, but nonetheless demonstrates
the need to continually evaluate the choice of animal model when
studying chemically induced thyroid disruption. For some PBDE
congeners, evidence in fish demonstrates thyroid dysregulation
at low doses (i.e.,, ~ppb levels) that roughly compares to levels
detected in the environment and tends o be lower than doses
typically administered in rodent studies. Additional low dose
studies are needed 1o determine whether non-monotonic dose
responses are occurring in fish and other vertebrates exposed o

PBDEs.
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Basis for inclusion and scientific impact:

Issues surrounding the human health and ecological effects of chemical exposures coupled with
climate change have not been well characterized but are becoming an increasingly important issue. The
Intergovernmental Panel on Climate Change (IPCC) in its most recent 5" Assessment Report
(hitps://www.ipce.ch/report/ar5/) published in 2014 describes that climate change coupled with air
pollution (and other risk factors, such as heat stress, precipitation extremes, and drought) are projected
to increase risks for people, assets, and economies, particularly for those urban populations lacking

essential infrastructure and services. Similarly, the IPCC reports that terrestrial, freshwater, and marine
species face increased extinction risk due to climate change and its interactions with pollution and other
factors. In light of these types of growing concerns about climate-toxicology interactions, | spearheaded
a collaborative project to complete and publish an in-depth review of the current evidence describing
the effects of climate change on the distribution and toxicity of chemicals. At the time this manuscript
was published in 2009, there had been very little attention focused on this topic. This paper was a
collaborative effort among several scientists at Duke University. | was the lead author on the sections
describing climate change effects on the environmental fate and distribution of chemical as well as the
review of the interactive effects of climate change and pollution on human health. | was also the lead
writer describing the effects of climate change on chemical toxicokinetics and toxicity pathways to
wildlife. | managed the peer review process including editing the manuscript and responding to
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drawing attention to the influence of climate change on chemical exposure and toxicity, and conversely,
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for a global SETAC Pellston workshop to assess and develop approaches to consider climate change in
chemical risk assessment, which | had the pleasure of participating (See Section D). As further evidence
of its impact, Google Scholar reports that it has been cited over 390 times in peer review publications.
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The toxicology of climate change: Environmental contaminants in a warming world

Pamela D. Noyes *°, Matthew K. McElwee *P<, Hilary D. Miller ®®, Bryan W. Clark ", Lindsey A. Van Tiem *?,
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ARTICLE INFO ABSTRACT
Article History: Climate change induced by anthropogenic warming of the earth's atmosphere is a daunting problem. This review
Received 26 August 2008 examines one of the consequences of clirnate change that has only recently attracted attention: narmely, the effects

of climate change on the environmental distribution and toxicity of chemical pollutants, A review was undertaken
of the scientific literature {original research articles, reviews, government and intergovernmental reports)
forusing on the interactions of foxicants with the envirommental parameters, temperature, precipitation, and

Available online 16 April 2009

;(g;g,ds. salinity, as altered by climate change, Three broad classes of chemical toxicants of global significance were the
Climate change focus: air pollutants, persistent organic pollutants (POPs), including some organochlorine pesticides, and other
Global warming classes of pesticides, Generally, increases in temperature will enhance the toxicity of contaminants and increase
Multiple stressors concentrations of tropospheric ozone regionally, but will also likely increase rates of chemical degradation, While
Ozone further research is needed, climate change coupled with air polhutant exposures may have potentially serious

adverse consequences for human health in wban and polluted regions, Climate change producing alterations in:
food webs, liptd dynamics, ice and snow melt, and organic carbon cydling could result in increased POP levels in
water, soil, and biota. There is also compelling evidence that increasing temperatures could be deleterious o
Salinity pol]u!ﬂgﬁ—e}(poaed wild!ife, ?or examp]fe,, e!evat:eci ‘v«_/ater i’empefatures may aitf‘e,r the .bioigransfc)rmatif)n of
Temperature contaminants to more bioactive metabolites and impair homeostasis. The complex interactions between dimate
Toxicokinetics change and pollutants may be particularly problematic for species living at the edge of their physiological tolerance
range where acclimation capacity may be limited. In addition to temperature increases, regional precipitation
patterns are projected to be altered with climate change. Regions subject to decreases in precipitation may
experience enhanced volatilization of POPs and pesticides to the atmosphere. Reduced precipitation will also
increase air pollution in urhanized regions resulting in negative health effects, which may be exacerbated by
temperature increases, Regions subject to increased precipitation will have lower levels of air pollution, but will
likely experience enhanced surface deposition of airborne POPs and increased run-off of pesticides. Moreover,
increases in the infensity and frequency of storm events linked to climate change could lead to more severe
episodes of chemical contamination of water bodies and surrounding watersheds. Changes in salinity may affect
aquatic organisms as an independent stressor as well as by altering the bicavailability and in some instances
increasing the toxicity of chemicals. A paramount issue will be to identify species and populations especially
vilnerable to climate-pollutant interactions, in the context of the many other physical, chemical, and biological
stressors that will be altered with climate change. Moreover, it will be important to predict tipping points that
might trigger or accelerate synergistic interactions between dimate change and contaminant exposures.

© 2008 Published by Elsevier Lid.
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1. Introduction

Climate change is an increasingly urgent problem with potentially
far-reaching consequences for life on earth, Humans and wildlife are also
exposed to an array of chemical, physical, and biological stressors that
arise largely from anthropogenic activity, but also from natural sources,
One of the consequences of climate change that has recently attracted
attention is its potential to alter the environmental distribution and
biological effects of chemical toxicants. There is growing awareness of
the importance of anticipating the effects of chemical pollution in the
rapidly changing environment, and identifying and mitigating effects in
those humans and ecosystems most vilnerable,

The UN. Intergovernmental Pane} on Climate Change (IPCC) has
completed four assessments covering the evidence, impacts, and
mitigation of climate change (IPCC, 2007abcde). They report
unequivocal global warming with evidence of increases in global
mean air and ocean temperatures, widespread snow and ice melt, and
rising global sea level. Temperature is projected to ingrease 1.8-4.0 °C
by the end of the century under a range of probable greenhouse gas
emnission scenarios with the greatest warming expected at high
latitudes. In addition to global warming, some regions, such as North
and South America, northern Europe, and northern and central Asia
are projected to experience increased precipitation, while others,
including southern Africa and Asia and the Mediterranean, are
expected 0 experience substantial droughts. Heat waves, precipita-
tion and storm events are predicted to be more frequent and intense.
Oceanic acidification linked to increasing atmospheric carbon dioxide
tevels is a growing threat to marine organisms and ecosystems.

This article examines how the environimental parameters, teimpera-
ture, precipitation, and salinity, as altered by climate change, could affect
the environmental distribution and biological effects of chemical
toxicants, It is intended to provide a broad perspective on the
interactions of climate change and chemical behavior/toxicity based
on available research, which in some cases continues to be Hmited, For
example, key aspects of climate change and pollutant interactions that
merit further study involve describing effects on vulnerable species and
populations and revealing the nature of thresholds that might trigger
adverse events. While climate change will affect the environmental
distribution and roxicity of numerous chemical toxicants, we focus
primarily on three major classes of giobal significance: air pollutants,
persistent organic pollutants (POPs), and other pesticides, Air pollution
is a global problem, and here we focus on two compounds, tropospheric
ozone and particulate matter (PM), as they are potent toxicants of
human health concern. POPs are persistent, bicaccumulative, and toxic
(PRT) contarninants found ubiquitously in the environment, humans,
and wildlife, At present, twelve chiorinated organic chemicals are listed
as POPs under the UN. Stockholm Convention, including several
arganochlorine pesticides, such as dichlorodiphenyitrichloroethane

(DDT) and toxaphene, as well as the polychlorinated biphenyis {PCBs),
dioxins, and furans (UNEF, 2005), Other pesticides, such as atrazine,
aldicarb, and chlorpyrifos are of special interest as they are applied in
large quantities over a broad area and have a range of toxicological
effects. Moreover, pesticide use patterns may change as agriculture and
pest species shift in response to climate change.

2. Effects of climate change on contaminant environmental fate
and behavior

Climate change will have a powerful effect on the environmental
fate and behavior of chemical toxicants by altering physical, chemical,
and biclogical drivers of partitioning between the atmosphere, water,
soil/sediment, and biota, including: air-surface exchange, wet/dry
deposition, and reaction rates (e.g., photolysis, biodegradation,
pxidation in air). Temperature and precipitation. as altered by climate
change, are expected to have the largest influence on the partitioning
of chemical toxicants. In addition, an array of important processes,
such as snow and ice melt, biota lipid dynamics, and organic carbon
cycling, will be altered by climate change potentially producing
significant increases in fugacity {thermodynamic measure of sub-
stance tendency to prefer one phase over another) and contaminant
concentrations {MacDonald et al, 2002).

2.1, Altered fate and behavior of air pollutants

It is widely recognized that air quality and climate change are
strongly interconnected (IPCC, 2007¢,c0). CHmate change is projected
to generally degrade air quality, but for tropospheric ozone and PM,
there continues to be uncertainty as to the direction and magnitude of
changes in environmental distribution patterns (Aw and Kleeman,
2003; Ebi et al,, 2006; IPCC, 2007c.e; Racherla and Adars, 2006).

Tropospheric ozone is generally short-lived and forms in the lower
atmosphere from the nitrogen oxide (NOx)-dependent photochermi-
cal oxidation of volatile organic compounds (VOCs), carbon monoxide
{CQ), and sulfur dioxide (SO} (Forster et al., 2007}, Ozone levels are
dictated by emissions of ozone precursors, temperatiure, water vapor
levels, atmospheric circulation patterns, and stratospheric inputs
{Denman et al, 2007, Forster et al, 2007, Stevenson et al, 2006).
Elevated temperatures generally fead to increased formation of ozone,
while increased water vapor generally leads to increased breakdown
of ozone. As such, climate change impacts on regional ozone levels
will largely be determined by the extent to which temperature, water
vapor levels, and air circulation patterns are altered. The interplay of
these factors is depicted in Fig. 1, Legend ftem A

While ozone concentrations are projected to increase for many regions,
climate change, on a global scale, is expected t© generally accelerate
tropospheric ozone destruction due to catalyzed photodegradation in the
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presence of increased atmospheric water vapor, For example, Racherla
and Adams {2006} project a 5% decline in global tropospheric ozone
concentrations in the 2050s from 1980s levels using present day
poliutant emission scenarios. Dentener et al. {2006) and Stevenson et al,
{2006) estimated {uture ozone concentrations for 2030 based on
current levels of emissions. They calculated that climate change could
reduce global ozone by 0.5-1.0 ppb over the continents and 1-2 ppb
over the oceans.

However, despite estimates of net global declines, several studies
project regional scale increases in ozone poltution linked to climate change
{Aw and Kleernan, 2003; Cheng er al, 2007, Hogrefe er al, 2004; Langner
et al, 2005; Stevenson et al, 2006). For example, tropospheric ozone
concentrations are predicted to increase in Southern California as a result
of accelerated gas phase reaction rates associated with rising temperatures
{Aw and Kleeman, 2003). Similarly, using the WCC A2 high (0O, emission
scenario, Hogrefe et al, (2004} estimate increases in swmimertime average
daily maximum 8-hour ozone concentrations over the eastern US. of
2.7 ppb hy the 2020s, 4.2 ppb by the 2050s, and 5.0 ppb by the 2080s,

Models of the New York metropolitan area have been used to estimate
average summertime ozone increases from 0.3 ppb in the 19905 t0 4.3 ppb
by the 2050s (Knowlton et al., 2004, Cheng et al. (2007} modeled future
concentrations of various air poliutants (ozone, NOx, S0, and suspended
particulates) in four south-central Canadian cities (Montreal, Ottawa,
Toronto, Windsor) using end of 20th century emission scenarios. They

bon monoxide; HOx = HO; -+ OH; NOx = Nitrogen oxides; {3 = Ozone; P =1
JOCs == Volatile organic compounds.

Particulate Matter; POP =

Precipitation; PM =

found that a warnming climate would increase the number of days in the
high ozone category {concentrations > 81 ppb) by 40-100% by the 2050s
and 70-200% by the 2080s, from the current average of eight days. In
Europe, increases in tropospheric ozone are projected over central and
southern regions predicted to experience precipitation declines (Langner
et al., 2005). In contrast, ozone decreases are projected 0 occur over
northern Europe due to increased precipitation,

Climate change-induced shifts in precipitation patterns will also
affect PM fate and behavior {Aw and Kleeman, 2003; Forster et al,,
2007, Racherla and Adams, 2008). PM consists of both natural and
anthropogenic sources of soils, dusts, acids, organic chemicals, and
metals. [tenters the atmosphere through direct emissions or is formed
as secondary particles through atmospheric chemical reactions
{Forster et al,, 2007). Much of the research on PM fate and behavior
focuses on PMyg (particles with an aerodynamic diameter <10 pm)
and more recently on PM,s {fine particles with an aerodynamic
diameter of <2.5 um) as these particle sizes are inhalable and have
been shown to be potent toxicants {Forster et al, 2007 LSEPA, 2004),

Decreased concentrations of atmospheric fine PM are projected in
regions that experience increases in precipitation due to enhanced
scavenging of PM by water molecules. Racherla and Adams {2006)
estimate that increases in precipitation and wet deposition loss rates
could decrease the global burdens and atmospheric residence times of
P 5 by 2-18% by the 20505 (Fig. 1, Legend ftem E). However, changes in
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other climate variables may also affect PM concentrations. Global
warming could increase the formation of secondary PM by catalyzing in
sity gas phase reactions (Fig. 1, Legend Item B). Aw and Kleeman (2003)
modeling of PM interactions with climate change in the Southern
California region indicate that non-volatile secondary PM may increase
with rising temperatures, but that semi-volatile secondary PM could
increase or decrease,

PM concentrations are highly affected by regional emissions, and
atmospheric transport of these pollutants can be driven by synoptic-
scale (ie., low or high pressure systerns of the lower atmosphere that
range on the order of 1000 to 2500 km) weather patterns. For example,
Buchanan et al. (2002) investigated the influence of regional weather
patterns on PMy, concentrations in Edinburgh, Scotland and demon-
strated that PM can move well beyond its point source due to these large
area dynamics. As climate change is predicted to affect synoptic-scale
weather patterns, regional distribution of air pollutants may be affected,
in contrast, increases in the frequency of stagnant air events in poliuted
urban, rural, or industrial settings could enhance the intensity of air
pollution {Fig. 1, Legend ltem D) {Denman et al, 2007).

2.2, Altered fate and behavior of POPs

Chimate change will influence the environmental fate and behavior
of POPs by altering the fundamental mechanisms of solvent switching
and solvent depletion, and by enhancing contaminant degradation
{Brubaker and Hites, 1998; Ma et al, 2004; MacDonald et al., 2002;
Mevyer and Wania, 2008, Sinkkonen and Paasivirta, 2000; Sweetman
et al, 2005; Wania, 1999). Solvent switching involves contaminants
partitioning into different chemical phases {solid, liquid, gas) in the
direction of thermodynamic equilibrium, While this process can in-
crease concentrations of a contaminant in an environmental compart-
ment (water, sediment, biota, etc.}, it cannot produce confaminant
concentrations that exceed the thermodynamic eguilibrium (MacDo-
nald et al, 2002; Wania, 1999). The effects of global warming on
solvent switching can be predicted by considering temperature-
driven changes in partitioning constants of POPs, such as Hengry's Law
Constants (HLC).

In contrast to solvent switching, solvent depletion is a complex
process that requires energy and increases fugacity and often
contaminant concentrations as solvent concentrations continually
decline, Thus, contaminant concentrations in a given environmental
compartment can exceed the thermodynamic equilibriom (MacDo-
nald et al, 2002), Examples of solvent depletion processes that may be
influenced by climate change include contaminant biomagnification,
trophic structure alterations, hydrological processes, and organic
carbon cycling. Many transport processes and spatial and temporal
variables can influence solvent depletion processes making them
difficult o predict (Macdonald et al,, 2003; Wania, 1999).

Enhanced volatility and partitioning of POPs to the atmosphere by
solvent switching is likely with global warming, as are increases in the
rate of contaminant degradation. The warming climate may produce a
minor reduction in POP exposure to aquatic biota because of enhanced
partitioning from water to the atmosphere as contaminant HLCs rise
with increasing water temperatures {Ma et al,, 2004; Macdonald et al,,
2003). Supporting this hypothesis, elevated air temperatures from
1990-2000 linked to fluctuations of the North Atlantic Oscillation, El
Nifio-Southern Oscillation, and Pacific North American patterns
increased the volatility and atmospheric concentrations of the POPs,
hexachlorobenzene {HCB), and PCBs, in the Great Lakes Region, USA
(Ma et al, 2004).

Observed temperature increases due to climate change are most
pronounced at higher latitudes. The IPCC reports that average arctic
temperatures have increased at nearly twice the global average rate in
the past 100 years (IPCC, 2007e). POPs are unique in that they can
move thousands of miles from their point of release and are often
observed at higher latitudes. This observation is explained by the

concept of global fractionation {(Braune et al, 2005%; Breivik et al,
2004; Wania and Mackay, 1998). Most POPs are semi-volatile enough
to evaporate at temperate or tropical latitudes, existing as gases or
adsorbed to aerosols in the atmosphere. Global atmospheric circula-
tion transports these air masses, containing POPs, to higher latirudes
in short jumps coinciding with the seasons. As temperature gradients
between high and low latitudes become less pronounced. the
temperature-induced global fractionation of POPs to high latitudes
could decline (Beyer et al., 2003),

In addition, a decline in atmospheric partitioning and transpost of
POPs to the poles may result from temperature- and precipitation-
accelerated increases in degradation, particularly in the atmosphere
and soil {Balla Valle et al,, 2007; Macdonald et al., 2005; Sinkkonen
and Paasivirta, 2000; Sweetman et al, 2005; Wania and Madkay,
1996), Dalla Valle et al. {2007) predict that increasing temperatures in
Venice Lagoon, ftaly will accelerate the degradation of PCB 118 and
PCB 180 congeners, 2,37 8-tetrachlorodibenzofuran, and 1,2,3,4,7.8-
hexachlorodibenzofuran in most environmental compartments. How-
ever, these authors note that while elevated temperatures are
expected to decrease the fugacity capacity {i.e.. indicator of compart-
ment capacity to store a chemical) of most environmental compart-
ments, the fugacity capacity of the air compartment is projected to
decline only negligibly. Thus, enhanced atmospheric mobility and
long-range transport is predicted in this study. Global warming,
however, may also accelerate atmospheric photodegradation of POPs,
counter-halancing this atmospheric partitioning {Brubaker and Hites,
1998; Sinkkonen and Paasivirta, 2000),

While atmospheric partitioning of POPs and enhanced degradation
are generally predicted with climate change, regional patterns of
increased precipitation and ice/snow melt are expected o enhance
wet deposition of POPs to aguatic and terrestrial ecosystems {Macdo-
nald et al, 2003; Meyer and Wania, 2008; Wania and Mackay, 1896),
Macdonald et al. {2003 note that increases in precipitation will be an
important variable driving the distribution of some POPs, such as
hexachlorecyciohexane (HCH) and toxaphene, to aguatic systems. Both
HCH and toxaphene have HLCs that favor water partitioning. Moreover,
snow and snowmelt are powerful drivers in solvent switching and
solvent depletion processes that may increase contaminant levels
{Macdonald etal,, 2003; Meyer and Wania, 2008 ), Falling snow provides
a solvent switching condirion under which contaminants can be readily
adsorbed to snow surfaces and transported to the ground, As the climate
warms and snow melts or sinters, the loss of surface area results in a
solvent depleting condition that increases the concentration of
contaminant in meltwater. Macdonald et al. (2003) estimate that this
process might result in a loss of 10° to 10°% m? of surface area for every
1000 kg of snow, which may lead t©o a substantial increase of POPs in
meltwater,

Melting sea ice coupled with expanded open water may also
accelerate the rate of exchange of some POPs from air to water.
Macdonald et al. {2005) provide a summed PCB congener budget of
gas exchange into the Arctic Ocean of 20 metric tons/year, and esti-
mate that reduced Arctic sea ice cover of 50% could result in 2
proportionate doubling of PCB air to sea exchange. Glaciers have also
acted as long-term sinks for POPs and melting of this ice is expected to
remobilize these archived pollutants {¥Fig. 1, Legend Item F) (Blais
et al, 2001}, However, pollutant remobilization from glaciers may not
be a major influence on the overall POP budget in Arctic ecosystems.
One exception is DIV, for which Arctic glacial melt is projected tobe a
significant climate-modulated source {Blais et al,, 2001},

Organic carbon cycles in terrestrial and aqguatic systems will also be
altered by climate change, which will in turn alter POP distributions
{Macdonald et al,, 2003; Magnuson et al, 1997, Schindler et al, 1997).
Declines in dissolved organic carbon {DOC) were gbserved between
1970 and 1990 in boreal lakes in northwestern Ontario during an
extended period of climate warming and drought coupled with
increased forest fires (Schindler et al,, 1997). The declines in DOC were

ED_002435_00006144-00099



P Noyes et al. / Environment International 35 (2009} 971-986

attributed to decreased stream flow to lakes caused by drought and
increased evaporation from warming. POPs will readily partition from
water to carbon-rich particles, such as DOC. Thus, reduced DOC levels
due to climate change could reduce the capacity of waters to bind
these contaminants thereby making them more bioavailable for
uptake by aquatic species (Magnuson et al, 1897 Schindler et al,
1997).

Temperature-induced acceleration of organic carbon metabolism
by soil and sediment biota could also increase contaminant concen-
trations and promote partitioning to water and aquaric biota
{(Macdonald et al, 2003). However, biodegradation rates of POPs
will also increase with rising soil and sediment temperature {(Fig. 1,
Legend ltems H, M), which may ameliorate POP increases from this
solvent depleting process (Sinkkonen and Paasivirta, 2000; Sweetman
et al, 2005). Increased temperatures will also increase the volatiliza-
tion of POPs from soils to air (Fig. 1, Legend ttems G, K) where they will
be subject to photodegradation and transport (Fig. 1, Legend ltem C)
{Beyer et al., 2003; Brubaker and Hites, 1998, Ma et al,, 2004; Schever
et al, 2005). For example, the loss of permalrost associated with rising
temperatures will re-release poliutants from these once frozen spils
making them available for atmospheric partitioning or runoff to
aquatic systems {Macdonald et al, 2005).

fn addition to the many abiotic factors that can influence con-
taminant behavior, altered species migration patterns linked to
climate change could be an important factor modulating the transport
of POPs (Blais et al., 2007 ). Migratory species, particudarly fish, birds,
and marine mammals, may be exposed to contaminants in one
tocation and transport these contaminants in substantial guantities to
other locations. This biotic transport of contaminants may be similar
in magnitude to atmospheric and oceanic transport {Burek et al,
2008). There is evidence, for example, that Arctic and Antarctic birds
fnay act as vectors transporting persistent contaminants from oceans
to terrestrial systems via their guano (Blais et al., 2005). In Canadian
coastal ponds under the nesting cliffs of northern fulmars (Fulmarus
glacialis), concentrations of HCB, DDT, and mercury were 10 to 60
times higher than contaminant concentrations in sediments from
unaffected ponds. Similar results have been observed for Antarcric
seabirds, whereby elevated DDT and HCH levels have been measured in
sediments at locations where penguins historically migrated {Blais
et al, 2007). These studies provide some evidence that climate-
induced fuctuations in the migratory patterns of birds could play an
unportant role in altering the local and global transport of POPs {Burek
etal, 2008). In addition, PCB fluxes are up to eight times higher in sub-
Arctic lakes receiving the greatest sockeve salmon (Oncorfiynchus
nerkus) returns than in lakes receiving atmospheric inputs of PCBs
alone (Krummel et al., 2003). Since temperature is an important
controller of anadromous and freshwater fish migrations, temperature
increases linked to climate change could aiter POP fate through
changes in fish spawning behavior (Wrona et al,, 2005).

2.3. Altered fate and behavior of pesticides

Like the POPs, climate change will influence the environmental
fate and behavior of pesticides by altering fundamental mechanisms
of environmental partitioning primarily through mechanisms of
increased volatility, wet deposition, and enhanced degradation.
While additional research is needed, many pesticides may prove to
be less susceptible to solvent depleting processes than POPs since
they are generally less persistent and more likely to degrade with
climate change. Specifically, global warming may reduce soil and
aquatic concentrations of pesticides due to a combination of
increased volatilization and degradation {Batley, 2004; Benitez et
al, 2006; Van den Berg et al,, 1999) (Fig. 1, Legend Items G, H, LK, M,
N). Conversely, increases in the intensity and freguency of rain and
storm events will promote the wet deposition of pesticides to
terrestrial and aguatic systems {Bolbmohy er al, 2007; Burgoa and

1=}
~3
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Wauchope, 1985; Chiovarou and Siewicki, 2007, Dabrowski et al,
2002; Presley et al, 2006; Vu et al, 2006). Independent of these
distribution processes, cdlimate change may alter the frequency and
amount of pesticides used as agriculture shifts in response to the
rapidly changing climate (Chen and McCarl, 2001; Reilly et al., 2001,
20033,

Vplatilization is a key factor in the environmental partitioning of
pesticides, and global warming could lead to enhanced volatilization
of pesticides relative to soil and water. Van den Berg et al. (1882}
notes that volatilization processes may be responsible for the loss of
up to 50% of the applied dose of a pesticide, depending on the
properties of the pesticide, application technigue used and environ-
mental conditions. With this atmospheric partitioning, pesticides may
be dispersed from areas of high concentrations to areas of lower
concentrations, possibly exposing new populations to the toxic effects
of the pesticides {Beyer et al, 2003). In addition to enhanced
volatility, climate change could have an important effect on accel-
erating pesticide degradation (Bailey, 2004, Benitez et al., 2006;
Bloomfield et al, 2006), Bailey (2004) examined residues of the
pesticide isoproturon in soils over a twenty-year period and found
that from 1897-2001 increased degradation in warmer soils caused
pesticide concentrations to fall too low to control weed growth
30 days earlier than in years before 1997 Additionally, increased
water temperature was found to increase the photodegradation rate
of several phenyl-urea pesticides {Benitez et al, 2006). Given the
potential increase in the loss of applied pesticides due to enhanced
volatility and degradation, a compensatory increase in pesticide
applications may be necessary to be efficacious against target pests,
Bloomfield o al. {2006) report on the findings of the European Food
Safety Authority's 2005 Sdentific Panel that for every 10 *Clincrease in
temperature, it is predicted that the half-life of pesticides in soils may
decrease by 60%,

The PCC {2007e) reports that precipitation events and extremes
are very likely to become more frequent, widespread, and intense
during the 21st century. Moreover, a range of climate models
supports a likely increase in the intensity of typhoons and hurricanes
with heavier precipitation and higher peak wind speeds (IPCC
2007e). Precipitation scavenges gases and aerosols, with adsorbed
chemical particles, from the atmosphere and deposits them to
surfaces {Fig. 1, Legend ltem E}. As storms and rainfall events become
maore intense and frequent, increasing amounts of contaminants will
be deposited to surfaces and lost in runoff, predominantly as pulse
releases, exposing humans and wildlife to these chemicals (Fig, 1,
Legend item | (Bollmohr et al, 2007; Burgoa and Wauchope, 1895,
Chiovarou and Siewicki, 2007; Presley et al,, 2006; Vu et al, 20086),
Bolimeohr et al. {2007} examined the exposure and toxicity of a
variety of pesticides, including chlorpyrifos and endosulfan, in
arthropods and fish in the Lourens River and estuary in Western
Cape, South Africa. No detectable amounts of the pyrethroids
cypermethrin and fenvalerate were measured in the upper Lourens
River, but these pesticides were found in the estuary at levels likely to
pose acute and chronic risk to aquatic life. Pesticide concentrations in
a rice paddy watershed at the Sakura river basin in Japan were
monitored for 3 years starting in 2002 (Vu et al, 2008). Sixteen
different herbicides were detected in the stream water, and surface
drainage significantly increased during rainfall events greater than
1.5 c¢m per day. Elevated soil moisture associated with increased
precipitation could also enhance the degradation of pesticides to
differentially toxic and environmentaily mobile degradates (Fig. 1,
Legend ltem 1) {Van den Berg et al, 1999). Conversely, the hydrolytic
degradation of these chemicals may be limited in regions with
reduced precipitation and lower soil moisture levels {Bailey, 2004;
Van den Berg et al,, 1998),

in terms of the links between storm intensity and chemical con-
tamination of aquatic systems, Chiovarcu and Siewicki (2007}
modeled the transport and fate of the six pesticides, atrazine, carbaryl,
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diguat dibromide, imidacloprid, and fipronil, in water bodies in
Volusia County, Florida and Portland, Oregon under different storm
intensities. Concentrations of all six contaminants were found ©
increase with increasing storm intensity, Consistent with these
results, Prestey et al. (2006) investigated pollutant and pathogen
levels in New Orleans, Louisiana shortly following Hurricane Katrina,
They measured soil and sediment concentrations of several contami-
nants, including the POP aldrin and other semi-volatile organic
pollutants, as well as several metals, and found levels that exceeded
(1.5, EPA human health soil screening levels, which are used to identify
hazardous waste sites that merit further evaluation under Superfund
law, Burgoa and Wauchope (1995) also found a five-fold increase in
applied pesticide loss to runoff during extreme rainfall events,
These studies provide evidence that the influence of climate change
on increasing storm intensity and frequency could lead to episodes
of heightened contamination of water bodies and surrounding
watersheds,

It is not possible to fully consider the effects of climate change on
pesticide distributions in the environment without also considering
anticipated shifts in agriculeure. Climate change is likely to affect
agricuiture by shifting the location and type of crops grown and the
range and magnitude of crop pests. Pesticide use will shift in response
to these altered cropping patterns and crop pest distributions,
Although most investigations have focused on the US. and Europe,
growers are expected to be able to expand crop production to higher
{atitudes and altitudes not currently suitable for farming (Bloomfield
et gk, 2000; MAFE 2000; Reilly et al, 2003; TubieHo et al,, 2002},

Tubielio et al. {2002) predict that both wheat and corn production
will migrate north in the US. due to increased temperature and
precipitation, while hotter and drier climates in the south will
experience decreased crop production. Warmer temperatures in
northern regions will also lead to longer growing seasons, potentially
allowing increased farming and increased pesticide use. Farmers will
also be able to grow new crops in areas currently under cultivation
with other crops. Increased temperatures may make the currently
temperate south of England favorable for growing sunflower, grapes,
peaches (Fuller et al., 2001), and grain maize (Bloomfield et al., 2006).
These types of expanded cropping patterns will likely result in new
pesticide uses on naive ecosystems, as well as potential increases in
the volume and array of pesticides used.

Another route by which climate change is likely to affect pesticide
use is by altering the distribution and abundance of crop pests.
Climate change may influence crop pest populations by reducing
generation times and over-wintering mwortality, increasing the
number of generations and population growth rates, and altering
crop-pest synchrony (Canneon, 1998; Olfert and Weiss, 2006;
Patterson et al, 1999 Porter et al, 1981). Studies show that the
main drivers of pest distribution and abundance are termnperature,
rainfall, and CO,, all of which are being altered with dimarte change
{Gutierrez et al., 2006; Porter et al, 1991; Rafoss and Saethre, 2003 ).

One early study modeled the potential distribution of the
European corn borer {Ostrinia nubilalis) and found an estimated
northward shift in the pest’s European range of up to 1220 km with a
temperature increase of 3-6 °C {Porter et al, 1991). Olfert and Weiss
{2006} made a similar prediction for three pest species of beetles in
Canada. In a more regionally based analysis, Gutierrez et al, {2006}
examined the distribution and abundance of pink bollworm
(Pectinophora gossypielln) in cotton in Arizona and California. Their
model predicts that the bollworm is currently unlikely to reach pest
status in the Central Yalley of California, but that its range is likely to
expand into the Central Valley with temperature increases of 1.5~
2.5 °C. Rafoss and Saethre {2003) predict that the codling moth
{Cydia pomonelia) will extend its range and abundance in Norway
with increasing temperatures, and that the Colorado potato beetle
could migrate into Norway where it is not currently established. In
contrast to the studies described above, Newman {2005) predicted

that climate change would reduce the abundance of aphid species in
southern Britain. These varied results demonstrate that while pests
may generally increase in number and distribution, changes are
likely to be species and region specific,

Some studies have examined how pesticide use could shift in
response to these expected climate change-induced alterations in pest
distributions and intensity {Chen and McCar}, 2001 Reilly et al, 2001,
2003). For example, Reilly et al. (2003 focus modeling on the decades
of the 2030s and 2090s and assess climate change impacts on
pesticide use by measuring pesticide expenditures, They project
climate-linked increases in pesticide expenditures in the U.S. ranging
from 10-20% on corn, 5-15% on potatees, and 2-5% on soybeans and
cotton, but variable shifts in pesticide expenditures on wheat of & 15%
depending on the region and dimate change scenario. No delineation
is provided concerning the difference in pesticide expenditures
between the decades studied, In addition, this modeling applies the
IPCCs ISA2A emissions scenario, which has since been updated by the
IPCC under its “Special Report on Emission Scenarios” (1PCC, 2000).
Diespite these limitations, the resuits from this study are generally
consistent with findings by Chen and McCarl {2001) in which
increases in U5, pesticide expenditures are projected in 2090 for
corn, cotton, potatoes, and soybeans pests, with variable changes in
wheat-related pesticide expenditures,

Expanded cropping patterns and increased pest pressures are
expected to increase the variety and amount of pesticides used, More-
over, increased pesticide usage may be necessitated as climate change
enhances chemical volatilization, degradation, and runoff. Taken
together, these climate change-induced shifts in agriculture may
increase human and wildlife exposures to pesticides.

3. Effects of climate change on contaminant-linked human health
effects

The IPCC projects that climate change is likely to affect the health of
millions of people, and that the effects will be mostly negative
{Confalonier et al, 2007). The elderly, infants, children, and urban
poor are expected to be most vulnerable to the rapidly changing
clirmate (Confalonieri et al., 2007, Ebi et al, 2006; Patr et al, 2000a,
2005). Notable adverse consequences of climate change on human
health include increased death and injury associated with more severe
and frequent heat waves, extremie weather events, and enhanced
vector-borne and allergic disease transmission. While adverse health
outcomes are projected to be greatest in low-incoime countries, more
severe, frequent, and widespread heat waves and storm events will
also impact developed countries unprepared to cope with these events
{Confalonieri et al., 2007).

There continues to be a lack of data describing the effects of con-
taminant exposures on human heaith and vulnerable subpopulations
under projected climate change scenarios. However, a number of studies
suggest that the toxicity of ozone and PM will be exacerbated with global
warmming, and some of these data support that older aduilts will be
especially vulnerable (Bell et al, 2007; Confalonieri et al, 2007;
Dominict et al, 2006; Fala et al, 2003; WPCC, 2007¢; Katsouyanni
et al, 1993; Knowlton et al, 2004; Koken et al, 2003; Mauzerall et al,
2005; Ordonez et al,, 2005; Rainham and Smover-Tomic, 2003; Ren and
Tong, 2006). Other potential interactions between climate change and
toxicant exposure include increased susceptibility to pathogens (Abadin
et al, 2007; MNagayama et al, 2007; Smialowicz et al, 2001) and
aeroallergens (D'Amato et al, 2002; Diaz-Sanchez et al, 2003; Epstein,
2005; Janssen et al, 2003). Table 1 summmarizes important interactions
between climate change, toxicant exposures, and human health,

3.1 Vulnerable subpopulations

Elucidating the relationship between humans and the climate is
complicated by the interactive nature of the many environmental,
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Table 3
Clirnate change-induced effects of contaminants on hurnan health,
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biological, and socioeconomic conditions that can influence human
health {Epstein, 2005; Haines et al., 2006; McMichael et al,, 2006; Patz
et al, 2005). The nature of negative health outcomes linked to climate
change and the ability of populations to acclimate will depend on
many conditions, These conditions include the age distribution and
prevalence of inherited disease across the population, the surrounding
physical and biclogical environment, and the many social and
econormic variables that influence population health {e.g., education,
health care infrastructure, economic development) (Haines et al,
2006; McMichael et al, 2006),

Assessments of the US. population have identified the very young
{<1 year), older aduits (>65 years), and immuno-compromised in-
dividuals as more vulnerable to climate change because they have a
reduced capacity to acclimatize to extreme heat and are also more
vulnerable to vector-, food-, and water-borne disease {Ebi et al., 2008;
Patz et al, 2000b}, Ebi et al, {2006 note that there will be 100 million
miore Americans that are aged 65 or older in 2100 than in 2000, leading to
generally increased vulnerability of the US. population to dimate
sensitive health outcomes. The effects of contaminants on vulnerable
subpopulations warrant further study, although there is evidence that
older individuals will be more susceptible to climate-air pollutant
interactions {Fala et al. 2003; Koken et al, 2003, Ordonerz et al., 2005},
tn addition, low-income populations, infants, children, and chronically il
individuals may be especially susceptible to climate sensitive outcomes
linked to interactions between poliutant exposures and changes in
vector-borne and allergic disease {&'Amato et al, 2002; Diaz-Sanchez
et al,, 2003%; Epstein, 2005; Haines et al, 2006; Janssen et al, 2003).

3.2, Air pollutants and cardio-respiratory disease

Studies exarmining interactions between climate change, air
poltution, and human health have focused largely on tropospheric
ozone and PM (Confalonieri et al,, 2007; 1PCC 2007¢). Generally, heat
appears to render people more vulnerable to the adverse effects of air
pollution. Climate change-induced increases in tropospheric ozone
and PM, as is projected for many regions, coupled with global
warming may exacerbate human vulnerability to cardio-respiratory
disease especially among older adults,

Rising temperatures appear to increase susceptibility to cardio-
respiratory disease linked to air pollution exposures. Epidemiological
evidence suggests that heat exacerbates mortality and morbidity from
cardio-respiratory disease in humans exposed to ozone and PM (Flala

et al, 2003; IPCC 2007¢; Koken o al, 2003; Ordonez et al, 2005;
Rainham and Smover-Tomic, 2003). During the European heat wave of
2003, there was a surge in respiratory illnesses that was associated
with increased concentrations of particulates and czone especially
among the elderly (Fiala et al, 2003, Ordonez et al, 2005). In another
study illustrating the effects of climate sensitive outcomes on
vulnerable older populations, males in Denver, Colorade aged 65
and older were found to be at increased risk for hospitalization for
acute myocardial infarction, coronary arteriosclerosis, and pulmonary
heart disease when co-exposed to higher temperatires and ozone
{¥Koken et al, 2003). More recently, Bell et al. {2008) examined
confounding factors, including air pollution levels, on heat-related
mortality in three Latin American cities: Mexico City, Mexico, Sao
Paulo, Brazil, and Santiago, Chile. They found that ozone and PMyg
enhanced heat-related mortality, and that susceptibifity was asso-
ciated with increasing age in all three cities,

Modeling studies also show increased mortality and morbidity with
increased ozone exposure coupled with global warming (Bell et al,
2007, Knowlton et al, 2004; Mauzerall et al, 2005; Rainham and
Seoyer-Tomic, 2003). For example, using the IPCC AZ dimate scenario
{i.e., high growth of C0;}, a 4.5% increase in ozone-related deaths in the
U.S. from climate change was modeled for the mid 2050s compared o
the 1990s {Knowlton et al, 2004). Similarly, Bell et al. (2007) estimated
elevated ozone in 50 U.S. cities applying the IPCC A2 climate scenario
and found a corresponding increase in daily total mortality of 0.11% to
(.27%. By examining cardio-respiratory mortality in Toronto, Canada
from 1980 to 1996, Rainham et al (2003) detected a small, but
consistent effect of air poliution {ozone, NOx, SO,, CO, and PMy,) on
temnperature/ humidity-related mortality, Recently, Ren et al. (2008}
modeled the modulating effects of ternperature and ozone interactions
on mortality from 1987 to 2000 in 60 large eastern U.S. cities, and found
that temperatiure had a synergistic effect on ozone-related mortality in
the northeast. Specifically, for each 10 ppb increase in ozone, low,
medium, and high temperatures increased mortality by 2.22%, 3.06%,
and 6.22%, respectively. However, in the sputheast US.. the effects of
temperature on ozone mortality were less robust than in the northeast,
This suggests that regional differences {e.g, geography, population age
structure, culture) may contribute to altering the effects of climate
change and air pollution on adverse health ocutcomes.

fncreasing temperatures may also modify the associations between
PM and cardio-respiratory disease. (Jian et al {2008} found a synergistic
effect of PMy; and high temperatures on daily cardio-respiratory
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mortality in Wuohan, China. The PMig effects were strongest on ex-
tremely high temperature days {daily average temperature 331 °C) and
weakest during normal temperature days (daily average temperature
18 °(). Epidemiological data collected in Brishane, Australia from 1896 to
2001 shows that respiratory- and cardiovascular-relared hospital
admissions and mortality were elevated when hoth temperature and
PM concentrations increased (Ren and Tong, 2006). Katsouyanni et al.
{1593} examined the interaction of smoke (PM), 50,, and ozone with
deaths in Athens, Greece during a July 1987 heat wave versus deaths in
the 6 previous fulys {1981-1986). They found a significant positive
association between S0, concentrations and temperature on the
number of deaths when the average daily temperature was at or
above a threshold of 30 °C. Bominici et al, (2006 constructed a database
of hospital admission rates from 1999 to 2002 using U.S. Medicare data
for cardiovascular and respiratory outcomes and injuries, ambient PMy s
concentrations, and temperature. They identified an association
hetween PM, s and hospital admission rates for respiratory outcomes
that was positively correlated with temperature. Moreover, a compar-
ison of regions with average temperatures that differed by 1 °C showed
that the warmer regions had an additional nine hospital admissions per
10000 individuals for respiratory tract infections per 10 pg/m’” increase
in P, s In contrast to the body of evidence showing positive asso-
ciations between temperature and air pollution on death and disease,
Samet et al. {1998) found little relationship between temperature and
particulate matter on mortality upon examination of mortality data for
Philadelphia, 1.5, from 1973-1980,

3.3, Altered effects of POPs and pesticides

GQuestions concerning climate change impacts on the toxicity and
risks to humans exposed to POPs and pesticides has received scant
attention. McKone et al. (1996} conducted a study to model the effects
ofa 5 “Cincrease in temnperature on human health risks in western US.
populations exposed to HCB. Their analysis concluded that this global
warming scenario would have little negative impact on health risk
associated with HCB among these populations. In fact, exposures to
humans might decline because of enhanced environmental degrada-
tion and the tendency of HCB to partition to the atmosphere with rising
temperature {Ma et al, 2004), This atmospheric partitioning would
remove it fromwater, thereby reducing exposures to aguatic biota, and
inn turn, potentially reducing human dietary exposures {Macdonald
et ak, 2005). However, under this scenario, this compound could then
he subject to atmospheric transport to northern latitudes, where wet
deposition to aguatic systerns may lead to potentially elevated dietary
exposures and health risks among exposed northern and indigenous
communities {Bard, 1999),

Chemical roxicant exposures may also affect homeostatic tem-
perature regulation in humans and other endotherms. Organopho-
sphate and carbamate insecticides are known to elicit a fever in
humans. Conversely, acute exposures in the rat lead o an acute
reduction in core temperature followed by a delayed elevation in the
core temperature {(Gordon, 1997; Watkinson et al, 2003). In
additional experiments, rats have been chronically exposed to dietary
chlorpyrifos, and then subsequently challenged with a larger dose of
chiorpyrifos (Gordon and Padnos, 2002). The ensuing hypothermic
response was observed to be greater than for a normal acute dose,
indicating that chronic exposure may sensitize the thermoregulatory
response, Intoxication by these classes of pesticides may make iteven
more difficult for humans {and other endotherms) to maintain normal
core temperatures, especially during times of thermal stress, such as
hieat waves.

3.4, Increased vulnerability to disease vectors

The potential for adverse huwman health impacts extends beyond
those direct effects linking climate change to augmented exposures

and toxicity. Climate change-induced shifts in disease vector range
and severity coupled with contaminant exposures could increase
human vulnerability to disease by impinging on the ability of
individuals to mount an effective iminune response to new pathogen
EXPOSUEs.

The distribution and emergence of vector-borne diseases, such as
malaria and cholera, are predicted to be dependent on temperature,
humidity, and precipitation (Lipp et al,, 2002; Patz et al,, 1996, 2005;
Regers and Randolph, 2000). As such, climate change is predicted to
facilitate the reemergence or expansion of endemic vector-borne
diseases or might promote the migration of these diseases to new
regions. For example, cholera incidences in south Asia are linked to
weather patterns {Patz et al., 2000a) and are predicted to increase
with shifts in precipitation patterns (IPCC, 2007¢), Likewise, malaria is
predicted to migrate into higher latitudes and altitudes, particularly in
Africa and South America, where it is endemic, although regions of
Africa are also predicted to see declines due to high temperatures and
desertification (IPCC, 2007b).

Evidence supports a link between contaminant exposures and
suppressed immune system function {Abadin et al,, 2007; Nagayama
et al., 2007; Smialowicz et al, 2001). Immunotoxicity is a sensitive
endpoint for several POPs, including heptachior, PCBs, and 2.3,7,8-
tetrachiorodibenzo-p-dioxin. Exposures to POPs may decrease the
ability of humans {and other animalis) o fight infection {Abadin et al,
2007). Young rats exposed to heptachlor were observed to have
suppressed antibody-mediated immune response as adults (Smialo-
wicz et al, 2001). A study of Japanese infants found that perinatal
exposure to dioxins, PCBs, and organochiorine pesticides altered the
ratios of lymphocyte subsets, potentially leading to increased
autoimmune disease and immune suppression later in life (Nagayama
et al., 2007}, While further study is need, immune system impairment
linked to toxicant exposures may increase human vulnerability to
climate-induced shifts in vector borne and infectious diseases.
Populations living in lower income countries may be especially
vulnerable to these pathogen-poliutant interactions as they may lack
the resources to prevent and manage disease {Haines et al, 2006).

3.5. Allergenicity

In addition to changes in vector-borne disease, the incidences and
severity of allergic disease are rising, especially in industrialized
countries {D'Amato et al, 2002; Diaz-Sanchez et al, 2003). Asthma
prevalence has quadrupled in the United States since 1980, Air
poliution and higher concentrations of COz-induced allergens linked
to climate change may be contributing to increased rates of allergic
disease and asthma (Epstein, 2005; Shea et al,, 2008},

Shifts in plant populations have already been documented as a
result of climate change {Rogers et al, 2006; Root et al., 2003, Singer
et al, 2005). For example, studies show that increasing concentrations
of CO, enhance the production of Amb a 1 allergen and polien from
ragweed (Ambrosia artemisiifolio L.) (Rogers et al, 2006; Singer et al,
2005), In addition, diesel exhaust, which contains numerous
pollutants, including PM, NOx, VOCs, €O, and polycyclic aromatic
hydrocarbons {(PAHs), has been shown to enhance allergenicity and
asthma symptoms in adults and children by acting synergistically with
allergens (D'Amato et al, 2002; Diaz-Sanchez et al, 2003; Janssen
et al., 2003). For example, Janssen et al. {2003) found that Dutch
children aged 7-12 from 24 schools within 400 m of a major roadway
had increased sensitization to outdoor allergens. This relationship
between adverse symptoms and traffic-related air pollution was
largely restricted to children with pre-existing bronchial hyper-
responsiveness (comymon among asthmatics) and allergen sensitivity,
Thus, the combination of enhanced air pollution and allergen
production linked to climate change may exacerbate allergic disease
and asthma incidences in vulnerable individuals, especially children,
infants, and asthmatics {Epstein, 2005),
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4. Effects of climate change on contaminant toxicity to wildlife

There is substantial evidence that chimate change is affecting the
phenology of organisms, the range and distribution of species, and the
composition and dynamics of cormmunities (Lovejoy and Hannah, 2005;
Penuelas and FileHa, 2001; Root et al, 2003; Walther et al, 2001 ). While
species have historically acclimated or adapted to changes in climate, the
rapid rate of cwrrent climate change coupled with increasingly
fragmented and impaired habitats present unprecedented challenges
for modern species (Boone et al, 2007; Fisk et al, 2005; Occhipinti-
Amnbrogi, 2007; Rohr et al, 2004, Schiedelc et al,, 2007)

The bivavailability and toxicity of POPs and pesticides in wildlife is
tikely to increase in response 1o rising temperatures and salinity (Boone
and Bridges, 1999; Capkin et al, 2006; Gaunt and Barker, 2000; Heugens
et al, 2001; Moore et al, 2003; Schiedel et al,, 2007; Silbergeld, 1973;
Song and Brown, 1998; Tachikawa and Sawamura, 1994; Wang et al,
2001; Waring and Moore, 2004). An underlying mechanism of this
interactive toxicity is that temiperature alters the toxicokinetics of chem-
ical pollutants in exposed biota (Buchwalter et al, 2003; [ydy et al,, 1999;
Maruya et al, 2003). Another mechanism probably influencing this
enhanced toxicity is that increasing temperature can alter homeostasis
and other key physiological mechanisms, thereby exacerbating the
adverse effects of contaminants (Anderson and Peterson, 1969; Broom-
hall, 2002, 2004; Gordon, 2003; Heath et al,, 1994; Patra et al, 2007).

Some populations, particulasly those living at the edge of their
homeostatic or physiological tolerance range, may be more vulnerable
to the to the dual stresses of climate change and contaminant exposures
{Anderson and Peterson, 1969; Gordon, 2003; Heath et al, 1994; Patra
et al, 2007). Moreover, the rapidity of dlimate change-induced shifts in
habitats and trophic food webs could affect contaminant toxicity by
altering exposure pathways and increasing susceptibility of some
populations, especially those already under stress (AMAF, 2004; Breivik
etal., 2004; Brook and Richardson, 2002, Gaston et al, 200%; Gilbertson
etal, 2003; Macdonald et al, 2005; Clafsdottir et al, 1998; Sagerupetal,
2000). A limitation of studies investigating the interactive toxicity of
climate change and contaminant exposures is that observed biological
effects may prove to have a non-linear relationship to the stressors. That
is, an incremental increase in temperature or contaminant may be less
important than thresholds or tipping points that frigger potentially
major synergisms in adverse effects across species, populations, and
comnmunities, Table 2 summarizes important climate change-contami-
nant interactions in wildlife,

Table Z
Climate change-induced toxicological effects of contaminants on wildlife.

1=}
~3
[{=]

4.1. Altered uptake and elimination

Increasing temperatures will generally increase the uptake and
excretion of toxicants, For example, Buchwalter et al, {2003) observed
enhanced uptake of the organophosphate (OP) pesticide chlorpyrifos
with increasing temperatures among three aquatic insect spedies;
Notonecta kirvyi, Preronarcys californica, and Dicosmoecus gilvipes.
Likewise, uptake of the pesticides chlorpyrifos and methyl-parathion,
and the POP pentachlorobenzene, increased at 20 °C and 30 °C
compared to 10 °Cin the midge, Chironomus tentans {Lydy et al,, 1999),
Decreased body burdens of chlorpyrifos and methyl-parathion were
also observed at higher temperatures, indicating increased metabo-
lism and excretion. Yet, body burdens did not change for pentachlor-
ogbenzene at any of the three temperatures tested. In the estuarine fish,
Fundufus heteroclitus, warmer temperatures (25 °C) contributed to a
rate of elimination of roxaphene congeners that was two-fold higher
than in cooler water (15 °C) (Maruya et al,, 2005), Similarly, Paterson
et al. {2007) monitored elimination of 72 PCB congeners in perch
under typical northern latitude annual temperature cycles, and found
that elimination occurred only during the spring and summer months
when water temperatures were near or above 20 °C

4.2. Increased toxicity

The toxicity of contaminants may be enhanced with increasing
termperatures {Boone and Bridges, 1999%; Capkin et al, 2006; Gaunt
and Barker, 2000; Sitbergeld, 1973). While the exact mechanisms
underlying this relationship are not fully understood and the majority
of research focuses on aguatic species, studies indicate that tempera-
ture-induced shifts in metabolism are one controlling factor (Buck-
man et al,, 2007; Lydy et al,, 1999; Monserrat and Bianchini, 1995].

The lethality of the POP dieldrin to the freshwater darter (Etheostoma
nigrum) increased with increasing temperatures {Sitbergeld, 1973). In
the green frog (Rana clamitans), the toxicity of the insecticide carbaryl
increased with temperature increases from 17 °Cto 22 °Cto 27 °C{Boone
and Bridges, 1999). Gaunt and Barker (2000) found that the toxicity of
the herbicide atrazine to catfish (fctalurus punctatus) increased with
increasing temperature of decreasing dissolved oxygen. They predicted
that changes in these two parameters, which would likely occur
simultaneously in cimate change scenarios, could greatly enhance the
toxicity of atrazine to some aquatic species. Caplin et al (2006}
observed increased mortality in juvenile rainbow trout (Cncorfynchus
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mykiss) exposed to the insecticide endosulfan as temperature was
increased from 13 °C to 16 °C In contrast to these findings, pyrethroids
and DDT are generally thought to be more toxic under low temperature
conditions, which may be due to a sodium channel modulated increase
in nervous system vulnesability ar lower temperatures (Narahashi,
2040). However, others have ohserved increased pyrethroid toxicity at
elevated temperatures in leopard frogs (Rana spp.) (Maternaetal, 1995)
and water fleas (Daphnia mogna) (Ratushnvak et al, 2005), illustrating
the species-specific response 1o increased temperatures and toxicant
eXposures,

Temperature-dependent changes in metabolism appear to be one
important mechanism modulating the biotransformation and
enhanced toxicity observed under elevated temperature conditions.
For example, despite the relatively high persistence of POPs in biota,
Buckman et al. {2007} observed enhanced biotransformation of PCBs
to the toxicologically active hydroxylated PCB metabolites by rainbow
trout with rising temperature (8,12, and 16 °C). Moreover, Lydy et al
{1999} postulate that while body burdens of the OP insecticides
decline at higher temperatures, toxicity is ultimately enhanced due to
an acceleration of the biotransformation of the OP insecticides to their
more toxic ortho-analog metabolites. Monserrat and Bianchini {1895)
suggested a similar explanation for the increased toxicity they
observed when exposing crabs {Chasmagnathus granulata) to methyl
parathion. There was an approximately ten-fold increase in acute
lethality with temperature change from 12 °C to 30 °C. The authors
suggest that the higher temiperature favors enzymatic activation of the
organophosphate over degradation and excretion.

The metabolism studies demonstrate a general concept that is
likely to hold true for the effect of temperature on toxicity of many
contaminants. While the rates of uptake and excretion may generally
increase with increasing temperature, the ultimate toxicity of these
contaminants will depend on whether changes in metabolism result
in increased big-activation or detoxification.

4.3. Alrered homeostasis and physiological responses

The ahility of species and populations to tolerate elevated tempera-
tures may be impaired with toxicant co-exposures. Alterations in
climate change parameters, predominantly temperature, will act as co-
stressors with chemical toxicants, thereby affecting physiological
processes and the ability of wildlife to maintain homeostasis (Broom-
hall, 2004). Ectotherms, such as fishes, amphibians, and reptiles, may be
particularly vulnerable to these temperature~contaminant inferactions.
Moreover, species living at the edge of their physiological tolerance
range may be less able to cope with the dual stressors of climate change
and contaminant exposures (Anderson and Peterson. 1969; Gordon,
2003; Heath et al, 1994; Patra et al, 2007).

The generalized stress of maintaining homeostasis under increas-
ing temperatures may potentiate the effects of some pesticides. When
egzs of the Australian frog {Limnoedynastes peronii) were reared under
a high and low temperature regimen and exposed to the insecticide
endosulfan, there was a negative effect of endosulfan on predator
avoidance that was proportionally worse for the tadpoles reared at a
higher temperature {Broomball, 2004). This same effect was observed
in a previous study with another amphibian species, Litorig cifropa
{Brognthall, 2002). Upper temperature tolerance limits were also
reduced in the following four species of freshwater fish exposed to
endosulfan and chlorpyrifos; silver perch (Bidyanus bidyanus), eastern
rainbow fish (Melanotaenia duboulayi), western carp gudgeon
{Hypseleotris klunzingeri), and rainbow trout (Farra et al, 2007). The
ability of brook trout { Salvelinus fontinalis) and Atlantic salmon (Safmo
salar) to acclimate to increasing temperature is impaired by sub-lethal
doses of DDT {Anderson and Peterson, 1968). Heath et al {(1984)
found that exposure of fathead minnows (Pimephales promelas) to low
doses of the pyrethroid insecticide cyfluthrin could reduce their zone
of temperature tolerance by 30%. Cyfluthrin exposure caused a

maximurmn decrease of 3.3 °C below median heat tolerance levels
and a 5.6 °C increase in median cold tolerance levels. They observed
effects at concentrations as low as 170 parts per trillion,

Another important consideration for climate change and polhutant
interactions is the timing of exposures at sensitive life stages induc-
ing responses that in turn alter physiological processes. Brian et al,
{2008) measured a transient increase of the yolk precursor protein,
vitellogenin (VTG), in male fathead minnows at higher tempera-
tures {30 °C vs. 20 °C) upon exposure to a mixture of endogenous
steroidal estrogen, 17B-estradiol, synthetic sterpidal estrogen, 17a-
ethinylestradiol, and other estrogenic chemicals {4-tertnonyiphenol.
4-tertoctylphenol, and bisphenol-A). The temperature-dependent
increase in VTG was observed only during the first 24 h of exposure,
demonstrating that the effects of elevated temperature were more
pronounced early in the exposure period, Increased storm intensity
and frequency associated with dimate change could lead to episodes
of high contaminant exposures due to chemical runoff, High exposure
episodes that coincide with sensitive life stages, such as during matu-
ration, spawning, and development, may be detrimental to aguatic
species fitness and survival,

4.4, Altered environmental salinity

In addition to giobal warming, climate change-induced shifts in
precipitation and evaporation patterns have resulted in increased
salinity in subtropical and tropical oceans and a freshening of mid and
high latitude waters {(IPCC, 2007¢). Sea level rise linked to climate
change is projected to lead to salt water infrusion into previously
freshwater habitats (IPCC, 2007e). However, salinity could decrease in
waters receiving elevated inputs of freshwater due to increases in
precipitation or snow and ice melt. In sum, the effects of climate change
on salinity patterns are complex and may vary by region as a number of
factors can influence this parameter. For example, in brackish water
ecosystems, like the Chesapeake Bay, salinity patterns contribute to
species distributions and are predicted to shift in response to climate
change (Pyke et al, 2008; Rogers and McCarty, 2000). Salinity
reductions are expected during winter due to projected increases in
tributary flow linked to elevated precipitation. Conversely, increased
regional drought frequency and sea level rise are predicted to lead
saltwater intrusion events and elevated salinity for portions of the Bay
{Pyke et al, 2008; Rogers and McCarty, 2000},

Salinity-contaminant interactions are made additionally complex
because salinity can influence the chemical itself or it may modulate
toxicity and physiological functioning of species {Fortin et al., 2008;
Heugens et al, 2001; Moore et al,, 2003; Schiedek et al, 2007; Schienk
and El-Alfy, 1998, Schwarzenbach et al, 2003; Song and Brown, 1998;
Tachikawa and Sawamura, 1994; Wang et al, 2001; Waring and
Moaore, 2004 ). Organic compounds are generally less soluble and more
bioavailable in saltwater than in freshwater due to the “salting out”
effect whereby water molecules are strongly bound by salts making
themn unavailable for dissolution of organic chemicals (Schwarzen-
bach et al, 2003). Thus, increased contaminant bicavailability and
toxicity is possible in subtropical latitudes experiencing increased
salinity, as well as in estuaries and coastal freshwater ecosystems
subject to increased saltwater intrusion or droughts. Consistent
with this hypothesis, increased mortality to the organophosphate
pesticide dimethoate was observed in salt marsh mosquitoes {Aedes
taenioriynchus) and brine shrimp (Artemia sp.) under hyperosmofic
conditions {i.e., 3-4 times the iscosmaotic salinity] (Song and Brown,
1992). The authors concluded that the increased toxicity might be
attributable to increased dimethoate bicavailability and accumulation
at the elevated salinity levels compared to the isoosmotic conditions.
They also report that another organophosphate pesticide, malathion,
has a higher degradation half-life in seawater {3-5 days) than in
freshwater {1 day), supporting the idea of higher persistence due to
salting out effects.
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Heugens et al, {2001) attribute the increased toxicity observed at
elevated salinity to higher physiological costs for organisms fo
maintain osmoregulation leading to a decline in fitness and elevated
sensitivity o contaminant exposures, There is support for this
assertion as several studies show that altered salinity profiles coupled
with POP and pesticide exposures may alter osmoregulatory function
in aguatic organisms {Fortin et al, 2008; Hall et al,, 1995; Moore et al,,
2003; Schiedek et al, 2007; Schienk and El-Alfy, 1998; Tachikawa and
Sawarnura, 1994; Wang et al,, 2001; Waring and Moore, 2004 ).

Spikes in atrazine concentrations may occur after heavy rain
events with concentrations reported in North American rivers at up to
108 pg/L and in the Chesapeake Bay at up to 30 pg/L (Fortin et al,
2008). A 96-hour exposure 0 atrazine at 5 pg/L impaired osmotic
control in F hetergclitus larvae, with higher prevalence of dehydrated
larvae at iscosmotic (15 ppt) and extreme (35 ppt) salinities and
hyperhydrated larvae at low salinities of 3 ppt (Fortin et al, 2008). In
the absence of atrazine, salinity had no effect on the prevalence of
hyper or hypo hydrated fish. In estuarine copepods (£ gffinis), high
(25 ppt) and low (5 ppt) salinity levels increase mortality in response
to high doses of the atrazine (>2.6 mg/L) (Hall et al, 19585}, The
authors concluded that Eurytorma might be more physiclogically
effective at metabolizing atrazine at intermediate salinities, although
unpaired osmotic control at these salinity extremes is probably an
important contributor o the elevated mortality. Similar results were
observed in another study exposing the copepod, Microarthridion
fittorale to chilorpyrifos and DDT (Staton et al, 2002). While the
miechanism leading to the impaired osmotic control in fish and altered
toxicity in copepods is unknown, alterations in enzymatic pathways
have been observed in fish under similar exposures {Moore et al,
2003; Tachikawa and Sawamura, 1894; Waring and Moore, 2004},

in Japanese medaka {Oryzias latipes), co-exposure to the pesticide
pentachlorophenol (PCP) and elevated salinity resulted in reductions in
PCPuptake and increasesin clearance (Tachikawa and Sawamura, 1994),
Decreased uptake of PCP was associated with decreased water flux
across the gills and increased clearance was linked to increased Nat, K" -
AlPase activity and developing chioride cells. However, pre-exposing
Adantic salmon smwolts to atrazine in freshwater at concentrations
greater than 1.0 pg/L resulted in mortality upon a 24-hour seawater
challenge (Waring and Moore, 2004). Enhanced activity of flavin-
containing monooxygenases (FMOs) is another enzymatic pathway that
miay play a role in potentiating the toxicity of some chemical toxicants
under conditions of elevated salinity {Schienk, 1998). FMOs are induced
in the presence of salinity and play a role in maintaining cellular osmotic
pressure. Flevated salinity leads to increased FMO activity, which in turn
enhances production of a more bioactive metabolite in aldicarb-exposed
fish {Wang et al, 2001).

4.5, Altered ecosystems

There is substantial evidence of the ecological impacts of climate
change across terrestrial and aguatic environments ranging from polar
to tropical regions {Lovejoy and Hannah, 2005; Penuelas and Filella,
2001; Root er al, 2003; Walther et al, 2001 ). While some species and
populations may be especially vulnerable to climate change, it is
imnportant to recognize that these impacts will be concomitant with
and in some cases exacerbated by other ecosystem stressors, notably
chemical pollution, invasive species, over-harvesting, habitat destruc-
tion, and pathogens. The superimposition of these increasingly
commmon ecosystem stressors with the rapidly changing climate
could further hinder wildlife acclimation and adaptation to climate
change {Cook et al,, 1998; Fischlin et al,, 2007; Macdonald et al, 2005;
Occhipinti-Ambrogi, 2007, Scavia et al,, 2002). The IPCC projects that
ecosystem resilience in many regions is likely to be exceeded this
century by an unprecedented combination of climate change
disturbances and these many other anthropogenic and natural
stressors {Fischlin et al, 2007),

Climate change producing alterations in trophic structures, food
spurces, migratory patterns, and feeding behavior may influence
processes of bicaccumulation and biomagnification in POP-exposed
animals (AMAFP, 2004; Furnell and Schweinsburg, 1984; Macdonaid
et al, 2005; Olafsdottir et al., 1998, Ramsay and Stirding, 1982; Stirling
et al,, 1999). Important solvent switching and solvent depletion pro-
cesses involve the partitioning of POPs from water to phytoplankton
and zooplankton at the base of aquatic food chains followed by
bicaccumulation and biomagnification up the food chain (Braune
etal, 2005; Macdonald er al, 2005), Apex predators at the top of some
food webs may experience significant biomagnification of POPs as a
result of these solvent switching and solvent depletion processes. For
example, polar bears (Ursus maritimus) generally have the highest
concentrations of POPs of any Arctic animal (Braune er al, 2005),
Sticling et al. (1999) observe that the loss of stable ice flows linked to
clirmate warming are the major factor contributing to Hudson Bay
polar bears coming ashore for several months of fasting in
progressively poorer condition. Hudson Bay polar bears prey primarily
on ringed seals (Phoca hispida), the population of which is in decline
due to a loss of these stable ice flows {Furnell and Schweinsburg, 1984,
Ramsay and Stirling, 1982; Stirding et al, 1998). Polar bears near
starvation will use stored fat as an energy source, remobilizing POPs
sequestered in these tissues and potentially resulting in the dual
stresses of starvation and chemical toxicity {Macdonald et al., 2005},

Chimate change-induced POP remobilization scenarios may apply
to other species as well, such as migratory salmon, common eider
{Somateria mollissima), thick-billed murres {Uria lormvia), and Arctic
Char (Sabvelinus alpinus) (AMAP, 2004; Macdonald er al, 2005;
Olafsdortir et al, 1998). For example, Arctic cod {Boreogadus saida)
are a primary, high fat forage fish for many Arctic species, and loss of
critical sea ice habitat may adversely affect Arctic cod populations and
those animals that rely on them for food, Gaston et al. (2003) analyzed
the diets of thick-billed murres from 1981-2002, and observed a
decrease in consumption of Arctic cod, This shift in diet increased the
fat burned to the fat energy gained. These types of shifts in food
sowrces could lead to greater relative biological burdens and remo-
bitization of POPs. However, POP bipaccumulation may be reduced in
some predators if they are able to switch to less contaminated food
sources {Brook and Richardson, 2002; Macdonald et al, 2005),

Similar to humans, climate change-induced shifts in pathogen and
disease vector ranges coupled with toxic contaninant exposures
could render wildlife more susceptible to disease by inhibiting their
ability to mount an effective immune response {Breivik et al, 2004,
Burek et al, 2008; de Swart et al, 1896; Gitbertson et al, 2003,
Kajiwara et al, 2002; Sagerup et al, 2000). Glaucous gulls (Larus
argentatus ) had a higher parasitic nematode infection level that was
correlated with PCB and organochlorine pesticide concentrations
{Sagerup et al, 2000). In laboratory and field studies, northern
leopard frogs {Rana pipiens) exhibited immune suppression because
of DDT or dieldrin exposure { Gitbertson et al,, 2003). Harbor porpoises
{Phocoena phocoena) exhibited a significant correlation between
concentrations of PCBs, polybrominated diphenyl ethers {PBDEs),
toxaphene, DDT and its metabolites and thymic atrophy and splenic
depletion (Breivik et al, 2004). Harbor seals (Phoca vituling) fed POP-
contaminated fish collected from the Bering Sea for 2.5 years had
higher body burdens of POPs than seals fed relatively uncontaminated
fish, and displayed impaired immune responses including suppression
of natural killer cell and specific T-cell activity, {de Swart et al,, 1996),

POPs, especially PCBs, DDT. dioxins, and furans, have also been
investigated as cofactors contributing to recent mass mortality
incidences attributed to morbilliviruses among several marine
mammal populations (Burek et al,, 2008; Kajiwara et al,, 2002; Kuiken
et al., 2006), For example, a mass mortality incident of 10,000 Caspian
seals {Phoco caspica) in the spring and surmimer 2000 was attributed
primarily to canine distemper virus, and like other incidences, was
preceded by an unusually mild winter, Kajiwara et al {2002) found
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that POP levels, especially for DDT/DDE and PUBs, were higher in
animals collected during the Caspian seal epizootic incident than in
earlier collections of healthy individuals, suggesting that these con-
taminants made animals more susceptible to disease. More recently,
however, Kuiken et al. (2008) re-analyzed tissue from the same
incident but eliminated some specimens from evaluation because
they were diagnosed negative for the virus. After this adjustment. the
authors found that POP concentrations in diseased seals in 2000 were
comparable to concentrations found in seals sampled in previpus
years. These mixed results are indicative of the need to better under-
stand the interactions of POP body burdens, immune system suppres-
sion, and climate-induced changes in pathogenic disease transmission
among exposed populations.

in addition to a potentially diminished immune response, other
toxic effects linked to chronic, low level POP exposures may impair
organism acclimation to ecosystem alterations {Jenssen, 2006). High
hlood levels of POPs, including HCB, oxychiordane, DDT metabolites,
and P(Bs, have been associated with a decrease in viable offspring, a
decrease in adult yearly survival rate, and an increase in wing feather
asymimetry (Bustnes et al., 2002, 2003 Kuenzel, 2003; Leeson and
Walsh, 2004}, Thyroid hormone deficits during early life stages affect
neuredevelopment and subsequent behavior and cognitive ability in
vertebrates (Donahue et al, 2004, Jenssen, 2006). Studies of polar
bears have shown disrupted thyroid hormone homeostasis induced by
POP exposures {Norstrom, 2000; Skaare of al, 2001; Wiig, 1895).
Jenssen {2006) hypothesize that since hunting and survival skills are
dependent upon behavioral and cognitive abilities, altered thyroid
hormone homeostasis associated with POP exposures may be a factor
hindering polar bear acclimatization to retreating sea ice. In another
example, PCB levels in the glavcous gull (Larus hyberboreus), a top
predator in the Arctic food web, were significantly related to the
proportion of time that adult gulls were absent from the nest {Bustnes
et al., 2001). The authors suggested that the gulls required more time
to gather food as a result of endocrine disruption or neurological
disorders due to high contamination levels,

Chimate change may also alter patterns of POP bicaccurmulation
and biomagnification by altering bottom-up or top-down mechanisms
controlling trophic food webs (Braune et al, 2005; Macdonald et al,
2003; Schiedek et al, 2007). Climate change-induced alterations in
bottom-up controlling mechanisms, such as altered nutrient and
primary production, may lead to the addition or removal of trophic
levels (Macdonald er al, 2003), This in turn could shift predators
higher or lower in the aguatic food web, leading to a respective
increase or reduction of POPs. Top-down alterations in trophic
structures elicited by the changing climate, for example, could involve
the loss or diminished populations of higher trophic level species
leading to consumption further down the food chain and reduced POP
biomagnification potential,

5. Conclusions

There is a growing body of evidence that climate change will have
broad negative impacts on the distribution and roxicity of environ-
mental contaminants (Bell et al, 2007; Buclman et al, 2007;
Confaloniert et al, 2007, Dentener et al, 2006; Fiala et al, 2003;
Hogrefe et al, 2004; Knowiton et al, 2004; Macdonald et al,, 2005;
Patra et al, 2007; Schiedek et al, 2007; Stevenson et al, 2008).
However, many areas merit further examination. Direct investigation
of climate change impacts on contaminant behavior and toxicity is
needed as much of the current literature examines this issue indirectly
{e.g., focusing on temperature, salinity, etc.). Research that dees focus
on climate change directly is of great benefit, but has dealt mainly
with predicting pollutant behavior under different climate change
scenarios. Less work has been undertaken to describe the toxicological
consequences of these altered pollutant distribution patterns, This
review also underscores the lack of data describing the effects of

climate change and toxicant exposures on human health. While
clirnate change is a global phenomenon, the existing literature has
only recently started to explore contaminant interactions outside of
North America and Europe (e.g, Bell et al, 2008; Qian et al, 2008). A
greater understanding of the biological effects of climate change on
chemical toxicity continues to be needed in other parts of the world,
This data gap is of special concern since impoverished populations
may be particularly susceptible to the interactive effects of climate
change and contaminant exposures, as these groups are often exposed
to other stressors, such as malnourishment and disease,

Air pollutant concentrations are closely intertwined with dlimate
change, making ozone and PM particilarly relevant, as they are
influenced by and act on climate change. Air pollution is projected o
increase in many regions due to climate change, especially in areas that
are wurbanized, polluted, and subject to reduced precipitation and
stagnant atmospheric circulation patterns. A growing body of epide-
mioclogical and modeling evidence supports that global warming
coupled with ozone and PM exposures could exacerbate the prevalence
and severity of human cardio-respiratory disease and mortality. Given
the large segment of the population exposed to outdoor air pollutants, a
relatively modest increase in mortality and morbidity estimated from
current modeling projections could transiate into a substantial number
of individuals at risk {Patz er al, 2003; Zhang et al, 2006} Certain
subpopulations, especially the elderly, infants and children, and
individuals with pre-existing health conditions, such as chronic
cardiopulmonary and immunological diseases, may be especially
susceptible to these adverse interactions {Ebi et al, 2008; Oberddrster,
2001 Patz et al, 2000a; Pope, 2000), There continues to be uncertainty,
however, induding that the modeling is based usually on a single
emissions scenario and other co-stressors may obscure the interactions
between climate, air pollution, and human health. Given the potentially
serious consequences of climate-air polfutant interactions on human
heaith, additional research is needed to further refine the modeling
projections and describe underlying mechanisms of toxicity,

For POPs and other pesticides, increases in temperature and
precipitation will influence environmental distribution through
increases in chemical volatility and degradation. Climate change
could facilitate a number of solvent depletion processes, including ice
and snow melt, altered trophic structures, bisaccumulation and
biomagnification, and organic carbon cycling, which could in turn
cause substantial POP increases in water, soil, sediment, and biota.
While these types of complex dimare-POP interactions are not fully
understood, they could be more problematic than climate sensitive
putcomes leading to thermodynamic forcing and altered environ-
mental partitioning {MacDonald et al,, 2002).

Global warming will be expected to enhance partitioning of POPs
and other pesticides to the atmosphere, though the increase in
atmospheric concentrations of these pollutants may be offset by
enhanced degradation (Bailey, 2004; Beniter et al,, 2006; Dalla Valle
et al,, 2007, Sinkkonen and Paasivirta, 2000; Sweetman et al., 2005;
Yanden Berget al, 1999; Wania and Mackay, 1996). Moreover, regions
subject to increased storm intensity, frequency, and variability could
experience pulses of chemical releases or runoff that might present
acute risks o human health and wildlife populations {Bollmebr et al,
2007, Burgoa and Wauchope, 1995; Chipvarou and Siewicki, 2007;
Dabrowsld et al., 2002; Presley et al,, 2006; Vu et al, 2006).

As for contamination at higher latitudes, some hypothesize that a
reduction of the temperature gradient across latitudes could suppress
the long-range transport of POPs {Beyer et al, 2003). Others present
evidence that accelerated polar melting of snow, ice, and permafrost,
as well as altered organic carbon cycling and metabsolism, could
remobilize and increase levels of archived pollutants and enhance
their air to sea exchange (Blais et al., 2001; Macdonald et al,, 2003;
Magnuson et al, 1997; Mever and Wania, 2008; Schindler et al, 1997).
Climate change is also expected to result in the greater use of
pesticides in regions experiencing increases in arable lands and
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expansion of pest pressures {Chen and McCarl, 2001; Reilly et al,
2001, 2003). As a result, human and wildlife pesticide exposures and
effects will shift. However, new, more efficacious pesticides and
adaptive farming practices, such as altered plant varieties and planting
regimens, could offset some of the expected increase in pesticide
applications,

increased temperature and salinity linked to climate change could
enhance the toxicity of some POPs and other pesticides in aguatic
biota. Altered biotransformation of contaminants to more bipactive
metabolites appears to be an important mechanism by which climate
change enhances chemical toxicity. Moreover, these dimate change
and contaminant interactions could compromise homeostasis and
physiological responses, potentially impairing species fitness, repro-
duction, and development (Brian et al, 2008; Heugens et al, 2001;
Schiedek et al., 2007).

The complex interactions between dlimate change and pollutants
may be particularly problematic for species living at the edge of their
physiological tolerance range. For most species, there are optimum
ranges of temperature, salinity, pH, moisture, etc,, and organisms
living under conditions that approach their tolerance limits are often
more vulnerable to additional stressors, such as climate change and
chemical pollution {Gordon, 2003; Heath et al,, 1994, Heugens et al,
2001; Patra et al, 2007). Species with narrow ranges of tolerance to
changing environmental conditions may have difficulty accdlimating to
climate change. Pollutant exposures may further hinder the ability of
organisms to acclimate and make them more susceptible to infectious
and vector-borne disease, In addition, species with short generational
times, such as microbes and insects, may adapt more successfully to

climate change than those species with long generational times.

Altered habitats caused by the rapidly changing climate also could
trigger species migrations that ultimately push populations into sub-
optimal regions where they may experience reduced overall fitness
and diminished tolerance to toxicant exposures { Heugens et al., 2001;
Schiedek et al, 2007).

improving our understanding of the effects of multiple stressors on
natural systems is an important challenge for environmental scientists,
It has taken on more urgency as climate change is not only altering the
fundamental structure and function of many ecosystems, but is
impacting the distribution and toxicity of chemical pollutants, The
vulnerability of human and wildlife populations to climate-sensitive
chemical exposures, in the context of the many other stressors that are
being altered with climate change, is the paramount guestion that
requires more rigorous study, In addition, the effects of climate change
on contarminant toxicity will almost certainly be non-linear, and an
important question for future research will be to elucidate thresholds or
tipping points in which contarninants as cofactors with other stressors
fead to profound effects on ecosysters.
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1. Thyroid Disruption Framework {Attached)

My research background has focused on examining chemical effects and modes of action
(MOAs) on the vertebrate thyroid system, development, and reproduction, and in the design and
implementation of high throughput screening (HTS) assays to characterize chemical interactions with
molecular targets. My research focus in both these areas has greatly informed my work in the
QCSPP/OSCP as part of the Endocrine Disrupter Screening Program (EDSP). In particular, the EDSP is
focused on screening and testing chemicals for their potential to disrupt the estrogen, androgen, and
thyroid pathways, and has been incorporating HTS assays into its in vivo and lower throughput in vitro
test battery. Though there have been important strides with the estrogen and androgen pathways, the
thyroid pathway has lagged due to limitations in the availability of HTS assays to evaluate chemical
effects on thyroid molecular targets as well as the biological complexity of chemical effects on the
thyroid axis. More recently, however, it became clear to me that EPA/ORD progress with new in vitro
HTS assays targeting the thyroid pathway has made it possible to start using these HTS approaches in
chemical screening for thyroid bioactivity.

As a first step in this process | have been leading the development of EPA’s framework to
integrate HTS assays into the EDSP screening battery. This is a collaborative project that has involved
working closely with over a dozen NCCT and NHEERL scientists to identify critical molecular targets for
the thyroid pathway, of which there are many, and carry-out evaluation of the many different new and
emerging thyroid HTS assays for their readiness to be used in hazard screening. This work has also
involved determining how best to begin to integrate and link these mechanistic tools with animal-based
studies, which are typically describing apical outcomes but not MOAs, thyroidal or otherwise. In addition
to a great deal of work in thyroid toxicology, this work has required using my knowledge of adverse
outcome pathway (AOP) approaches as we decided AOPs were a logical choice for organizing the
differing types of assays collected across multiple levels of biological organization. | have been the lead
coauthor of the framework document that has included communicating its approach, contents, and
timeline to internal and external stakeholders. | have also worked closely with our HTS- and thyroid-
focused research partners in ORD to complete the document.

The draft framework for peer review was completed under very fast timing (it was only just
started this summer) and will now be evaluated as part of an SAP peer review later in the spring 2017.
There is also the likelihood that this framework will be submitted for publication early next year. It has
been rewarding to work with the smart and committed scientists that are participating on this effort.
This framework will make an enormous difference in the Agency’s progress on a technical complex
mechanistic pathway. This type of approach for characterizing chemical effects on the thyroid axis has
not been undertaken to date, and has major international implications for how other governments and
organizations proceed with examining chemical thyroid disruption. It is poised to serve as a model both
within EPA and in the international community for using HTS data to evaluate chemical effects on other
toxicity pathways.
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2. SETAC Pellston Workshop

| was invited to participate on a SETAC Pellston Workshop to examine the influence of global
climate change on the scientific foundations and applications of environmental toxicology and chemistry
(https://www .setac.org/news/111775/New-Paper-Series-on-Global-Climate-Change-Workshop-Now-

Available.htm). These workshops, and the rigorous work that follows, are preeminent events that bring
together leading scientists from academia, industry, and government from around the world. It was an
honor to be able to work on such an important effort with global repercussions. This was the first
international workshop to begin to incorporate toxicology considerations into discussions of global
climate change as human health and ecological risk assessment are emerging as important tools in
making decisions about how to adapt to climate change. In particular, we focused on proposing and
designing a framework, using case study examples, to incorporate non-chemical parameters being
altered by climate change (e.g., temperature, precipitation, etc.) into chemical risk assessment
processes. | was asked to participate on the toxicity mechanisms workgroup based on my leadership and
risk assessment background with EPA and the manuscript | spearheaded to examine the interactive
effects of the changing climate on toxicity pathways, which was one of the first large scale scientific
impact assessment of this problem (Noyes et al., 2009).

Under the Pellston, a series of papers were completed of which | worked with several
coliaborators in co-authoring the toxicology mechanisms framework (Hooper et al. 2013). While these
papers were ultimately published, they represented a stand-alone compendium that together describe
the best available science describing the interactive effects of climate change on contaminant exposures
and effects, and importantly how to begin to assess and reduce these impacts. | was the lead co-author
with Dr. Gary Ankley, ORD/NHEERL, in preparing the endocrine disruptor screening portions of the
toxicity mechanisms framework, and was the primary author in preparing the section describing the
potential effects of the changing climate on the toxicity of thyroid disrupting chemicals. | designed an
AQP that integrated a great deal of mechanistic data for the thyroid axis pathway into a thyroid AOP
network that described interactive effects from molecular initiating events (MIEs) through key biological
events that culminate in adverse outcomes. | incorporated non-chemical parameters being altered by
climate change into this thyroid AOP network as a tool for understanding chemical and non-chemical
stressor interactions. This work represents one of the early thyroid AOP network constructs and was
particularly important because it demonstrated how AOPs can serve as excellent tools for integrating
non-chemical stressor data into pathway frameworks that could inform decision-making. It has been
used as one of the models informing the Thyroid Disruption Framework described previously. | also
researched and prepared the text describing the interactive effects of chemical exposures and
increasing hypoxia predicted under climate change. The hypoxia pathway is an area that | did not have
in-depth familiarity, but | was more than interested in tackling the literature to examine the potential
interactive effects of dioxin and aromatic hydrocarbon exposures on the aryl hydrocarbon receptor
(AhR) pathway in combination with cross-talk among hypoxia signaling pathways and teratogenicity.
Finally, | presented outcomes of the Pellston workshop on behalf of our toxicity mechanisms subgroup
at the 2011 SETAC meeting, and gave a seminar on this topic for the EPA NHEERL Mid-Continent Ecology
Division in 2012.
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3. UNEP/Norwegian EPA: Co-author on DecaBDE Risk Analysis

Decabromodiphenyl ether (DecaBDE) is an additive flame retardant primarily used in electrical
and electronic equipment, as well as in textiles, where it is applied as a polymer back-coating to fabrics.
Globally, DecaBDE has become the most used polybrominated diphenyl ether (PBDE) flame retardant.
The United Nations Environment Programme (UNEP) has been considering whether to list DecaBDE as a
Persistent Organic Pollutant (POP) under the Stockholm Convention. Norway was the key party
proposing the listing and so was responsible for preparing the risk analysis describing the evidence for
listing. The Norwegian EPA requested my assistance on a workgroup, along with other PBDE researchers
in the field, to assemble the DecaBDE risk analysis (UNEP/POPS/POPRC.10/10/Add.2). In particular,
Annex D to the Convention sets out criteria as to the required supporting evidence to determine a
chemical’s potential to be persistent, bioaccumulative, and toxic {i.e., PBT criteria), including the
potential for long range transport. | was the co-lead author with my PhD advisor, Dr. Heather Stapleton,
on the sections describing the evidence for the Environmental Fate {Section 2.2.) that included assessing
the data and evidence for DecaBDE’s: biological metabolism and debromination, bioavailability and
tissue distributions, and bioaccumulation/biomagnification potential.

The extent to which DecaBDE bioaccumulates and is metabolized has been one of the more
complex and controversial issues surrounding DecaBDE effects in humans and wildlife, in addition to its
potential to be a thyroid disruptor that impairs development. Our review found that there is a high
probability that DecaBDE is transformed in the environment and in biota to form substances, or act as
precursors to lower polybrominated diphenyl ethers (PBDEs), which themselves are POPs. The scientific
evidence supporting its metabolism and bioactivation to potentially more toxic, lower PBDE congeners
has not always aligned. My more recent research in fish supports both bioaccumulation and reductive
debromination of DecaBDE to lower PBDE congeners, but not oxidative metabolism, which is an
important metabolic pathway in mammals. Other recent evidence also supports bioaccumulation and
biotransformation. This more recent evidence of bicaccumulation and biotransformation appears to
coincide with advances in analytical technologies and methods to detect DecaBDE and other higher
PBDE congeners as historically they have been difficult analytes to measure in biota and environmental
media. | also participated in the review of the hazard portion of the risk analysis, and was grateful that
some of my laboratory research (Noyes et al. 2011, 2013) could be used in this evaluation.

In October 2015, the POP review committee adopted all the findings of the DecaBDE risk
analysis. The POP review committee further recommended that DecaBDE be listed under Annex A to the
Convention, which requires that manufacturers and end users take measures to eliminate the
production and use of DecaBDE. Given that DecaBDE continues to be detected in humans, wildlife, and
at high levels in the environment, it is a relief that this compound appears to be finally at a point where
it will be listed alongside the other PBDE commercial mixtures as a POP.

Risk Profile on DecaBDE, United Nations Environment Program, POP RC Reports,
UNEP/POPS/POPRC.10/10/Add.2: http://chm.pops.int/Default.aspxPtabid=2301
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4. Special Issue on Climate Change and Toxicology

| was invited by the Chinese journal, Current Zoology to co-lead, with Dr. Sean Lema, California
Polytechnic University, a special column to update the evidence on climate change and toxicology
interactions (http://www.currentzoology.org/issuedetail.asp?volume=61&number=4&issue id=552).
This Special Column of papers on “Ecotoxicology in a Changing Global Climate” addresses and updates
topical research and methods to advance our current understanding of climate change and toxicology
interactions. We were particularly interested in capturing international efforts focused on endocrine

disruption, and reached out to several leading researchers in the field to conduct research and reviews
on several issues. These issues describe: climatic shifts in the Arctic Ocean that are leading to food web
changes that are altering the dynamics of POP and mercury exposures (McKinney et al. 2015);
interactions between pesticides, fertilizers, and rising temperatures (Di Lorenzo et al. 2015); climate
change-toxicant interactions on estuarine biota (Delorenzo et al. 2015); effects of elevated CO2 on trace
metal exposures and effects {lvanina and Sokolova 2015). Dr. Lema and | also published an updated peer
review of our advancing understanding of how some classes of chemicals, particularly endocrine
disruptors and metals, are influencing climate change sensitivities, and how climate change is affecting
the adverse effects potential of other chemical classes {Noyes and Lema 2015). Together, these articles
describe the state-of-the-art of how the toxicity and endocrine-disrupting effects of chemical pollution is
being affected by the environmental disturbances associated with climate change. It has been my and
Dr. Lema’s hope that this special column serves as an essential update for researchers studying climate-
chemical interactions, and to provide insights to continue research to elucidate and reduce the potential
for amplified susceptibilities and tipping points that may lead to the reduced resilience or accelerated
decline of species. The papers that were recruited and selected for inclusion are cited below.

Delorenzo M, 2015. Impacts of climate change on the ecotoxicology of chemical contaminants in
estuarine organisms. Curr Zool 61:641-652.

Di Lorenzo T, Di Marzio WD, Cifoni M, Fiasca B, Baratti M, Sdenz ME, Galassi DMP, 2015. Temperature
effect on the sensitivity of the copepod Eucyclops serrulatus (Crustacea, Copepoda, Cyclopoida) to
agricultural pollutants in the hyporheic zone. Curr Zool 61:629-640.

Ilvanina AV, Sokolova IM, 2015. Interactive effects of metal pollution and ocean acidification on
physiology of marine organisms. Curr Zool 61:653-668.

McKinney M, Pedro S, Dietz R, Sonne C, Fisk AT, Roy D, Jenssen BM, Letcher RJ, 2015. A review of
ecological impacts of global climate change on persistent organic pollutant and mercury pathways and
exposures in arctic marine ecosystems. Curr Zool 61: 617-628.

Noyes PD, Lema SC, 2015. Forecasting the impacts of chemical pollution and climate change interactions
on the health of wildlife populations. Curr Zool 61:669-689.
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5. Metals Framework

One of the major projects | worked on during my time as a coordinator on EPA’s Risk
Assessment Forum, which was positioned in NCEA at the time, involved extensive work as a technical
panel member and coordinator to develop EPA’s Framework for Metals Risk Assessment
(hitps://www.epa.gov/risk/framework-metals-risk-assessment). The co-leads on this project were Dr.
Anne Fairbrother, ORD/NHEERL (Retired) and Dr. Randy Wentsel, ORD/Office of Science Policy (Retired).
My participation on the technical panel was extensive and involved drafting or assisting in the drafting

of all aspects of the document, including particularly sections on assessing metals persistence,
bioavailability and bioaccumulation potential. Another reason | am including this particular project is
that, unlike Dr. Fairbrother and Dr. Wentsel, | am not a metals scientist. | immersed myself in the metals
literature to understand the unique attributes of metals that make characterizing their environmental
behavior and potential for biological effects much different than that of organic contaminants of which |
have experience and training. | was responsible for managing the contract for technical white papers
that informed the structure and content of the framework. This required distilling and synthesizing the
data and results of these white papers for inclusion in the Framework. The Metals Risk Assessment
Framework was a high profile project with substantial monetary impacts, and required that | work
closely with our internal partners in EPA program offices, as well as our other government partners,
especially those from the DOE, DOD, and OMB. This coordination with internal and external
stakeholders required extensive negotiation of framework language. | managed the Risk Forums
interactions with the SAB to carry out the peer review of the framework, and managed the Agency’s
response to public comments of which there were many. | also managed two major public meetings that
were held to describe and invite input on science issues surrounding the framework.

6. Awards

| was awarded the 2016 Best Postdoctoral Publication award by the Society of Toxicology for my
work to design and implement tools and approaches using embryonic zebrafish HTS assays of
developmental toxicity to characterize the bioactivity potential of chemicals (Noyes et al. 2015). | was
awarded the EPA STAR grant fellowship for my doctoral studies and my postdoctoral studies were
funded under an NIH/NRSA fellowship. | have received awards for several presentations at international
meetings, including the 2010 International Dioxin and 2013 Brominated Flame Retardant Meetings.
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Executive Summary

The US EPA’s Endocrine Disruptor Screening Program (EDSP) was established to identify
chemicals that may disrupt estrogen, androgen, and thyroid hormone signaling. The EPA has been
implementing high-throughput screening (HTS) and computational methods to enhance screening
efficiency and reduce cost and animal use in chemical testing. A conceptual framework is described that
outlines how the EPA plans to use in vitro HTS data as part of a weight-of-evidence evaluations that
includes animal-based assays to screen chemicals for potential thyroid activity. It relies on an Adverse
QOutcome Pathway (AOP) network as the principal organizing tool to: 1) link putative molecular-initiating
events with in vivo effects observed in the current EDSP Tier 1 screening battery; 2) prioritize chemicals
for EDSP Tier 1 screening; and 3) contribute to overall weight of evidence (WoE) evaluations. Chemicals
may interact with the thyroid axis through many molecular initiating events (MIEs) that appear largely
non-receptor mediated. Recent efforts to summarize thyroid-related MIEs and new HTS assays provide
an opportunity to link in vivo data generated under the EDSP Tier 1 Screening battery to thyroid
pathway MOAs. Thyroid AOP networks provide an ideal tool for defining causal linkages, strengths of
evidence, and research needs across different MIEs targeted by HTS and the downstream sequence of
intermediate events and apical outcomes measured by EDSP in vivo screening assays. Several in vitro
HTS assays are now available and provide an opportunity to measure chemical effects on MIEs in the
thyroid pathway. Ongoing advances in these tools and thyroid AOP networks provide the opportunity
moving forward to characterize the linkages between new HTS and existing animal-based data that can
be used to build predictive models using computational approaches to further advance chemical

prioritization and WoE evaluations in support of risk assessment.
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Introduction

The U.S. Environmental Protection Agency (EPA) Endocrine Disruptor Screening Program (EDSP)
screens and tests chemicals for potential interference with estrogen, androgen, and thyroid hormone
signaling to assess the risk of endocrine disruption in exposed humans and wildlife. To more quickly and
cost-effectively screen chemicals for potential endocrine bioactivity, the EDSP has been integrating in
vitro high-throughput screening (HTS) assays for bioactivity at key endocrine-related molecular targets
(U.S.EPA 2015a). HTS assays and computational methods have been used to demonstrate the potential
for a chemical to interact with estrogen and androgen receptors (Browne et al. 2015; Judson et al. 2015;
U.S.EPA 2014a). In addition, in vitro HTS assays targeting thyroid disruption have recently become
available or adapted for use in EDSP applications. Thyroid hormone signaling encompasses complex
feedback loops involving the brain, thyroid gland, circulatory system, liver, and other target organs,
collectively referred to here as the ‘thyroid axis’, that are critical to the development and physiological
functioning of vertebrates (Crockford 2009; Dickhoff and Darling 1983; Heyland et al. 2004; Huang et al.
2015). Xenobiotics may interact with and perturb the thyroid axis through many molecular targets (as
reviewed by Brucker-Davis, 1998; Capen and Marten, 1989; Crofton, 2008; Gilbert and Zoeller, 2010;
Hurley et al., 1998; Murk et al., 2013; Zoeller and Crofton, 2000). The development and adaptation of in
vitro assays to examine chemical interactions with molecular targets of thyroid disruption provide an
opportunity to incorporate HTS technologies into chemical bioactivity screening efforts of the thyroid

axis pathway.

This paper describes a conceptual framework (Figure 4: AOP-informed Screening Framework)
for integrating and organizing in vitro HTS assays with in vivo animal studies to screen chemicals for their
potential to perturb the thyroid axis. The conceptual framework is informed by Adverse Qutcome
Pathway (AOP) constructs as the principle organizing tool for the thyroid axis (Ankley et al. 2010). We

describe an approach for integrating in vitro HTS assays with in vivo screening data to provide
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mechanistic information to: 1) characterize the connections between in vivo effects observed in the
current EDSP Tier 1 screening battery to a thyroid axis AQP; 2) inform chemical prioritization for EDSP
screening; and 3) contribute to overall weight of evidence (WoE) determinations of a chemical’s
potential to disrupt thyroid axis pathways. The conceptual framework described here is designed with
an eye toward EDSP longer term objectives of using mechanistic data derived from in vitro HTS assays as
possible alternatives to EDSP screening assays as the availability and reliability of HTS data to predict in

vivo outcomes for the thyroid axis is demonstrated (U.S.EPA 2014b).

A challenge of interpreting mechanistic data has been linking results measured at lower levels of
biological organization (e.g., receptor, biochemical, cellular) to apical endpoints meaningful in risk
assessment. To help address these challenges AOPs have been employed as organizing tools for
integrating causal or correlative linkages among the biological events that lead to adverse outcomes
(AOs) following chemical exposures (Ankley et al. 2010; Villeneuve et al. 2014). An AOP begins with a
molecular initiating event (MIE) and culminates in an adverse outcome connected by a linear sequence
of intermediate key events (KEs) measurable at increasingly complex levels of biological organization
(Figure 1). AOPs aim to visualize and document the series of key events that lead to toxicological
responses and are useful for assembling data derived from in silico, in vitro, and in vivo sources to
evaluate the plausibility of events leading to an AQ. For a particularly complex AQ, it may be that
multiple AOPs, each defined by a single MIE, may be required to fully appreciate the network of biology
relevant to that toxicity. The EDSP is now using frameworks for the estrogen and androgen pathways
that are informed by AOPs to: 1) integrate the diverse types of in vitro and in vivo data generated for
screening chemicals; 2) assess the performance of HTS methods as alternatives to low-throughput in
vitro data; and 3) evaluate computational models that use HTS data to predict downstream biological

responses to chemicals (Browne et al., 2016, submitted).
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90 The overall approach for screening and testing chemicals for their potential to interact with the
91  thyroid axis is the same as that being implemented for the estrogen and androgen pathways in that the
92 EPA is focused on evaluating important molecular targets and adverse outcomes with the best available
93 data and tools, including using available and reliable HTS approaches, alongside or as an alternative to
94 EDSP screening battery assays. This shared approach is intuitive to endocrine disruptor screening given
95  that hormones share common biological features and lifecycles represented by stages of synthesis,

96  transport, homeostatic regulation, receptor binding, and clearance that include molecular targets that
97 may be susceptible to chemical interference (Table 2). Practical differences come into play for EDSP

98 screening and testing based on our understanding of how chemicals may interact with these different
99 molecular targets in a given endocrine pathway, and the availability of assays and predictive models to

100 evaluate these chemical interactions.

101 With regard to the thyroid axis pathway, the EDSP screening battery currently lacks in vitro
102 assays relevant to chemical perturbation of their associated molecular targets, and as a consequence,
103 integration of related HTS data into the EDSP screening battery is less straightforward than for the

104  steroid hormone pathways where such in vitro assays are already part of the screening battery.

105 Nonetheless, like with the estrogen and androgen pathways, characterization of the linkages between
106  thyroid-related molecular targets and in vivo outcomes is critical in order to accurately understand the
107 manifestation of thyroid disruption. For the steroid hormones, EDSP has emphasized chemical

108 interactions with nuclear receptors because they have been shown to be prominent targets, albeit not
109 the only targets, for environmental chemicals (Arnold et al. 1996; Blair et al. 2000; Kavlock et al. 1996;
110 Kuiper et al. 1998). A variety of available and reliable HTS assays have been available for many years to
111 measure chemical interactions with steroid hormone receptor activity, and the Agency is now using
112 computational toxicology tools to screen chemicals for interaction with ERs (Browne et al. 2015; Judson

113 etal. 2015) and is adopting similar approaches for the AR signaling pathway (U.S.EPA 2014a). In
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contrast, strong evidence supports that chemicals can potentially perturb the thyroid axis through many
molecular initiating events (MIEs), which represents the initial point of chemical interaction ata
molecular level that starts the AOP (Table 3). In addition, unlike the steroid hormones, xenobiotics are
probably not interacting predominantly with the thyroid hormone receptor (Murk et al. 2013; OECD
2014). Given the number of MIEs demonstrated or hypothesized to be involved in chemical-mediated
disruption of the thyroid system, the use of computational toxicology tools for the thyroid pathway will
require a broader approach from evaluation of the estrogen and androgen pathways. Efforts to develop
and adapt in vitro, thyroid-related screening technologies for toxicology applications are making
progress, and an AQP-informed screening framework in Figure 4 provides a process for integrating these
HTS data into the EDSP screening battery. EPA is in a position to begin considering current HTS assays for
use in prioritization for Tier 1 screening, and as more HTS assays covering more molecular targets
become available, the Agency will be in a position to use these assays to inform WoE evaluations and as

alternatives to in vivo animal studies in the Tier 1 battery.

Background on U.S. EPA’s EDSP

The EPA developed the EDSP in response to statutory mandate in the Federal Food, Drug, and
Cosmetic Act (FFDCA), as amended by the Food Quality Protection Act (FQPA) of 1996, to develop a
screening program to evaluate chemicals for estrogenicity and provided authority to examine other
endocrine pathways (FFDCA 1996; FQPA 1996). Congress also amended the Safe Drinking Water Act
(SDWA) in 1996 and provided EPA with authority to evaluate chemicals found in sources of drinking
water to which substantial populations may be exposed (SDWA 1996). In response, the Agency
convened the Endocrine Disruption Screening and Testing Advisory Committee (EDSTAC), composed of
experts from academia, industry, and government, to provide advice on EDSP design and
implementation. The EDSTAC recommended that the EDSP evaluate chemical effects on the androgen

and thyroid pathways, in addition to estrogenic effects, in wildlife and humans (EDSTAC 1998). In

6
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addition, the EDSTAC recommended a two-tiered screening and testing strategy to link mechanistic data
to apical endpoints and conceptually organized the testing into ‘estrogenic’, ‘anti-estrogenic’,
‘androgenic’, ‘anti-androgenic’, and ‘thyroid-active’ endocrine pathways (Table 1). Tier 1 was designed
to screen for potential chemical interactions with the estrogen, androgen, and thyroid pathways, and
Tier 2 testing was intended to characterize chemical effects identified as potentially active in Tier 1
screening. The battery of five in vitro and six short-term in vivo Tier 1 screening assays was intended to
be considered collectively to maximize sensitivity while reducing the impact of limitations of any one
assay. A WoE assessment including the results of the Tier 1 battery, along with any other scientifically
relevant information (OSRI), forms the basis for whether subsequent Tier 2 testing is necessary {(U.S.EPA
2011). There are four comprehensive, in vivo Tier 2 tests that include multiple vertebrate taxa
(mammals, fish, birds, amphibians) intended to establish dose-response relationships and characterize

adverse outcomes for risk assessment.

At present, roughly 10,000 compounds are subject to EDSP statutory mandate. The universe of
chemicals includes data-rich chemicals, like pesticide active ingredients that require toxicity testing prior
to registration, as well as chemicals known or anticipated to occur in drinking water, such as disinfection
byproducts, pharmaceuticals, and industrial feedstocks, which may not have complete toxicological
profiles (U.S.EPA 2012). Initial test orders were issued in 2009 for EDSP Tier 1 screening on 67 chemicals;
58 pesticide active and nine pesticide inert ingredients (U.S.EPA 2009). Fifteen of these chemicals were
cancelled or discontinued by the pesticide registrant and are no longer in use, and WoE evaluations
were completed for the remaining 52 chemicals (U.S.EPA 2015b). Of the 52 chemicals evaluated, 18
showed potential interaction with the thyroid axis, and EPA recommended a long-term amphibian
growth and development assay (LAGDA; OCSPP 890.2300) and/or special thyroid assay be conducted for
7 of the 18 pesticides. The special thyroid assay in rats is a non-guideline study that has been required

by EPA’s Office of Pesticide Programs (OPP) in lieu of the rat developmental neurotoxicity study to
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generate specific thyroid-related data in pregnant and nursing dams, their fetuses and newborns
(U.S.EPA 2005). The proportion of chemicals that were potentially bioactive in the EDSP Tier 1 screening
battery along with the large number of chemicals subject to the EDSP underscores the critical need for

methods that can be employed for more rapid prioritization and hazard characterization.

Chemical Screening and Testing for Thyroid Axis Bioactivity

Of the 11 assays in the EDSP Tier 1 screening battery, three in vivo assays include thyroid-
relevant endpoints: Male Rat Pubertal Assay (OCSPP 890.1500), Female Rat Pubertal Assay (OSCPP
890.1450), and the Amphibian Metamorphosis Assay (AMA; OCSPP 890.1100). The in vivo pubertal
assays in male and female rats measure chemical effects on the reproductive and thyroid systems of
neuroendocrine-intact, peripubertal animals. Thyroid-specific endpoints measured in the pubertal
assays include serum concentrations of thyroxine (T4) and thyroid stimulating hormone (TSH), as well as
thyroid weight and histopathology. The AMA targets chemical effects on the vertebrate thyroid as
Amphibian metamorphosis is dependent on well-described and observable events that are TH mediated
(Denver 1998; Fort et al. 2007), which is the biological principle supporting use of the AMA in screening
for thyroid disruption. Endpoints measured in the AMA include thyroid histopathology, timing of
metamorphic transitioning, and other thyroid-modulated developmental parameters (hind limb length,

snout-vent length).

The EDSP screening and testing strategy was intended to link mechanistic data to adverse
outcomes. Though known thyroid toxicants were included during development of the EDSP Tier 1
screening battery, at the time, research and development of the set of in vitro assays relevant to
screening for thyroid axis bioactivity was less mature. A number of recent efforts have reviewed the
state of the science and research tools for examining chemical-thyroid system interactions. These
reviews serve as an important foundation and catalyst for the EDSP-specific framework outlined here.

Recently, the U.S. EPA, National Institutes of Health {(NIH), World Health Organization (WHO),
8
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Organisation for Economic Co-operation and Development (OECD), and academic organizations have
been developing tools to characterize the underlying AOPs by which chemicals may perturb the thyroid
pathway leading to potential adverse outcomes. For example, a 2011 workshop was sponsored by the
Assuring Safety without Animal Testing (ASAT) Foundation to review the MIEs and AQPs for chemically
induced thyroid disruption and assess the current availability and reliability of different in vitro tools
(Murk et al. 2013). Similarly, the OECD produced a scoping document that reviewed the performance
and adequacy of existing in vitro thyroid-related assays, and identified others that could serve to fill data

gaps with further optimization (OECD 2014).

Use of HTS and Computational Tools by the EDSP

The EDSTAC report to EPA in 1998 recommended inclusion of computational toxicology
approaches in endocrine bioactivity screens, including quantitative structure activity relationships and
HTS, although at that time the availability of relevant tools and methods was relatively limited (EDSTAC
1998). This focus by the EDSTAC was consistent with subsequent conclusions of the National Research
Council (NRC) in their report on Toxicity Testing in the 21st Century that indicated that a broad
transformational shift in toxicity testing was needed from whole animal test systems to in vitro
technologies and bioinformatics (NRC 2007). The NRC report emphasized advances in the availability
and reliability of in vitro and in sifico HTS tools for toxicity screening and promoted a shift towards
computational approaches to predict chemical bioactivity, increase the rate of screening, and reduce
animal testing. In response to the NRC report, the EPA, National Institute of Health (NIH), and Food and
Drug Administration {(FDA) formed the Tox21 consortium (http://www.epa.gov/ncct/Tox21/) to apply
HTS technologies to screen thousands of chemicals for toxic effects (Tice et al. 2013). In addition, EPA
launched its ToxCast™ program in 2007 (http://www?2.epa.gov/chemical-research/toxicity-forecasting)
to further develop in vitro HTS platforms for testing large environmental chemical libraries (Dix et al.

2007; Judson et al. 2010; Kavlock et al. 2008). With these advancements, the EDSP has been undergoing

9
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a multi-year transition under its EDSP21 initiative to use HTS technologies and computational methods

(U.S.EPA 2014b, 2015a).

Inclusion of HTS data in thyroid bioactivity screening is advantageous because although the
pubertal and AMA Tier 1 assays are intended to screen for thyroid-active chemicals, altered time to
development or other in vivo endpoints may be influenced by a variety of biological processes, and HTS
tools may indicate a putative MIE and AOP relevant for endocrine bioactivity. As portrayed in Figure 4, in
vitro HTS data can be readily integrated with Tier 1 assays in WoE evaluations of a chemical’s potential
to interact with the thyroid pathway, and we present a framework for organizing these diverse data in
the subsequent section on application of thyroid-related AOPs to the EDSP. The incorporation of in vitro
assays and mechanistic screening information for the thyroid axis pathway enhances the EDSP process
in four major ways: (1) identifying potential thyroid-related AOPs of interest for the xenobiotic in
question; (2) providing a rapid means of prioritizing chemicals for further in vitro or in vivo screening and
testing for thyroid-related endpoints under the Tier 1 battery; (3) identifying molecular targets that are
conserved across taxa to evaluate for cross-species relevance; and 4) aiding interpretation of potentially

thyroid-related adverse outcomes observed in Tier 2 tests.

MIEs and High-Throughput Methods Targeting the Thyroid Pathway

Recent reviews of thyroid disruption have summarized thyroid pathway MIEs that are
demonstrated or hypothesized targets of environmentally-relevant chemicals and reviewed the status of
HTS assays for these MIEs (Murk et al., 2013; OECD 2014). Table 3 summarizes the status of HTS
technologies targeting these MIEs as: 1) Existing — assays are either currently in use or capable of HTS; 2)
Promising — assays are currently in use that have the potential to be adopted or further optimized for
HTS; or 3) Research and development (R&D) — no HTS assays exist for the MIE or existing assays will
require basic R&D prior to use. The supplementary materials provide a detailed summary of the

underlying data supporting the toxicological relevance of each MIE and the status of different HTS
10
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technologies. HTS methods will continue to develop as more assays become available and current assays
are refined and adapted for HTS applications. Currently, in vitro HTS assays or lower/medium
throughput in vitro assays potentially amenable to high-throughput platforms and capable of measuring

chemical interactions with MIEs on the thyroid pathway include those targeting:

e TH biosynthesis — Sodium-iodide symporter (NIS), Thyroperoxidase (TPO);

e Serum TH-binding protein — Transthyretin (TTR), Thyroid binding globulin (TBG);

e TH peripheral tissue metabolism — Type 1 iodothyronine deiodinase {(D1) and markers of
nuclear receptor activation and metabolism (e.g., constitutive androstane receptor (CAR),
pregnane X receptor (PXR), uridinediphosphate glucuronosyl transferases (UDPGTSs));

e TH transmembrane transport — Monocarboxylate transporter 8 and 10 (MCT8, MCT10),
Organic anion transporter polypeptide 1c1 (OATP1C1); and

e Receptor-ligand binding — TR transactivation (TRTA), TSH receptor (TSHr), Thyrotropin

releasing hormone receptor (TRHr)

Below we highlight the status of HTS assays and discuss the relevance of several of the MIEs as
potential targets of chemicals in the context of more well-studied contaminants (e.g., polychlorinated
biphenyls (PCBs), organochlorine pesticides), halogenated flame retardants, organophosphate

pesticides, and other industrial and consumer product chemicals (Figure 2).

TH Biosynthesis: A number of chemicals have been shown to disrupt the thyroid system by
impairing the thyroid gland’s production of TH (Figure 2, inset). The most well characterized MIEs in the
thyroid pathway involve xenobiotic inhibition of iodine uptake into the thyroid gland (NIS inhibition) and
interference with hormone synthesis in the gland by inhibition of TPO activity. The most well
characterized MIEs in the thyroid pathway involve chemical inhibition of NIS and/or TPO bioactivity.
Perchlorate, which is used as a propellant in rocket fuels and in other industrial applications (Trumpolt

et al. 2005), is an example of a model inhibitor of NiS-mediated transport of iodide from the blood into
11
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thyroid follicular cells {Clewell et al. 2004; Dohan et al. 2007; Greer et al. 2002; Tietge et al. 2005). As
iodine is essential for production of TH, its diminished supply causes decreases in serum T4, with
elevated TSH, and thyroid gland hypertrophy with adult exposures in the EDSP Tier 1 male pubertal
assay (Stoker et al. 2006). Developmental exposure to perchlorate also reduces serum T4 in pregnant
and nursing dams and impairs synaptic transmission in the brains of offspring (Gilbert and Sui 2008).
Similarly, depleted serum T4, thyroid gland pathology and delayed metamorphosis occur in Amphibians
following exposure to perchlorate (Tietge et al. 2005; Tietge et al. 2010), emphasizing the conservation
of NIS across vertebrate taxa. An in vitro radioactive iodide (**°I-) uptake (RAIU) assay coupled to a
human NIS-expressing HEK293T cell line has been developed and adapted for use as an HTS assay to
identify chemicals that may inhibit 2°I- uptake by NIS (Hallinger et al. 2016; Murr et al. 2016). In
addition, several other existing medium-throughput assays are available to assess iodide uptake and are
potentially amenable to further HTS development (Cianchetta et al. 2010; Lecat-Guillet et al. 2008;

Rhoden et al. 2008; Waltz et al. 2010).

Chemicals may also perturb TH biosynthesis by inhibiting TPO. Methimazole and 6-propyl-2-
thiouracil (PTU) are pharmaceuticals used to treat hyperthyroidism in humans and animals and as model
goitrogens in basic research {Cooper et al. 1984; Nakashima et al. 1978; Taurog 1976; Zoeller and
Crofton 2005). A proposed ACP for PTU toxicity in developing humans includes maternal TH insufficiency
related to TPO inhibition along with peripheral inhibition of D1 {Leonard and Rosenberg 1978), leading
to reduced TH levels in the fetal brain, altered TH-mediated gene expression, structural brain
deformities, and abnormal behavioral outcomes depending on the timing of administration (Zoeller and
Crofton 2005). TPO is a relevant target for disruption across taxa, as TPO inhibitors reduce thyroid
hormone synthesis in amphibians and avian species (Coady et al. 2010; Grommen et al. 2011; Hornung
et al. 2015; Rosebrough et al. 2006; Tietge et al. 2010; Tietge et al. 2013). The peroxidase catalytic

domain of TPO is also highly conserved between rats, pigs, and humans (Paul et al. 2013). Thus, TPO
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presents a relevant, cross-species target for the EDSP. A fluorogenic HTS assay using Amplex UltraRed™
to detect TPO inhibition (AUR-TPO) has been developed and used to screen the ToxCast Phase 1 and 2

chemical libraries (~1000 chemicals; Paul-Friedman et al., 2016).

Serum TH-binding proteins: Some classes of environmental chemicals, particularly halogenated
aromatic chemicals, have been shown to be ligands that can bind to the serum TH transporter proteins,
notably TTR, thereby displacing native TH, which is hypothesized to increase TH clearance leading to
reduced serum TH concentrations. For example, in vitro evidence demonstrates that some brominated
flame retardants and their hydroxylated metabolites {Hamers et al. 2006; Marchesini et al. 2008; Meerts
et al. 2000; Ren and Guo 2012), polychlorinated biphenyls {(PCBs) (Cheek et al. 1999; Gutleb et al. 2010;
Ucan-Marin et al. 2010), and perfluorinated compounds (PFCs) (Weiss et al. 2009) may competitively
bind TTR {(and to a lesser extent TBG) and displace T4. A surface plasmon resonance (SPR)-based
biosensor assay for TTR and TBG has been developed that provides medium to high-throughput testing

capabilities with commercially available technologies (Marchesini et al. 2006; Marchesini et al. 2008).

TH peripheral tissue metabolism: In addition to inhibiting TH binding to serum transport
proteins, organohalogen chemicals have been shown to perturb TH homeostasis by altering the
expression and activity of Phase 2 conjugating enzymes, uridine diphosphate glucuronosyltransferases
(UDPGTs) and sulfotransferases (SULTs), thereby increasing TH catabolism, and in some cases reducing
serum TH levels by apparent excretion (Barter and Klaassen 1994; Butt et al. 2011; Hood et al. 2003;
Palace et al. 2008; Szabo et al. 2009; Yu et al. 2009; Zhou et al. 2002). ToxCast HTS assays are available
to assess a chemical’s ability to bind and activate specific hepatic nuclear receptors (e.g., CAR; PXR), but
these assays may not be as selective for identification of putative thyroid-disrupting chemicals. In vitro
HTS assays that target a chemical’s ability to measure induction of Phase 2 enzymes known to catabolize
thyroid hormones are still in development. The iodothyronine deiodinase (Dio) enzymes (D1, D2, D3) are
critical to the spatial and temporal maintenance of TH homeostasis and targets for chemical disruption

13
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across vertebrate taxa (Murk et al. 2013). Recent in vitro and in vivo evidence has shown that some
organohalogens can alter the expression and activity of Dio enzymes in human liver microsomes (Butt et
al. 2011}, rodents {Hood and Klaassen 2000; Szabo et al. 2009}, fish {(Dong et al. 2013; Noyes et al. 2011;
Noyes et al. 2013; Picard-Aitken et al. 2007) and birds (Farhat et al. 2013). Renko and coworkers have
developed lower throughput colorimetric assays that allow measurement of chemical effects on
deiodination activity as catalyzed by D1, D2, and D3 (Renko et al. 2012; Renko et al. 2015) as well as by
iodotyrosine deiodinases (IYD}{Renko et al. 2016). These assays are being adapted by EPA in designing
HTS formats to measure chemical effects on Dio enzyme activity with an HTS assays targeting D1

interference near completion.

TH transmembrane transport: MCT8, MCT10, and OATP1C1 have been shown to be specific and
potent TH transporters across plasma membranes (Friesema et al. 2003; Pizzagalli et al. 2002; van der
Deure et al. 2008; Visser et al. 2008), with mutations in the human MCT8 gene producing
hypothyroidism and severe neurological deficits (Friesema et al. 2004; Heuer et al. 2005). Limited in vivo
evidence suggests that some PBDE flame retardant chemicals may alter the expression of genes

encoding MCT8 and OATP1C1 (Noyes et al. 2013; Richardson et al. 2008).

Receptor-ligand Activity: Limited and in some cases divergent data suggest that some
chemicals, including some brominated flame retardants such as the PBDEs (Kitamura et al. 2008; Lema
et al. 2008; Noyes et al. 2013; Ren et al. 2013) and tetrabromobisphenol A (TBBPA) (Kitamura et al.
2005), perfluorinated compounds (Ren et al. 2015), and other chemicals used in plastics {e.g. bisphenol
A (BPA)) (Moriyama et al. 2002), can alter the expression and activity of TRs. However, ToxCast screens
of large chemical libraries using transactivation assays targeting TRa and TR have revealed few positive
results, suggesting that binding may be restricted to a limited set of structures

(htips://actorepa.gov/idashboard/). Similarly, HTS assays measuring chemical binding to TRHr and TSHr

are not predicted to be important MIEs for xenobiotic perturbation, although this is an area where
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research is limited. To empirically evaluate the environmental relevance of these targets, HTS assays for

TRHr and TSHr are currently being developed and analyzed as part of ongoing ToxCast/Tox21 efforts.

AOP Networks as Organizing Frameworks for Thyroid Bioactivity Screening

To provide a more realistic representation of biological complexity, multiple AOPs can be
integrated to construct AOP networks that include multiple MIEs that share at least one KE leading to
one or more adverse outcomes (Villeneuve et al. 2014). AOP networks are particularly useful for
evaluating thyroid MIEs that are potential targets for environmental chemicals. A detailed AOP network
can be used to organize and evaluate thyroid data in a research context and can be used to develop new
assays, examine the evidence for causality between KEs in the AQOP, and develop quantitative
relationships between KEs (Figure 3). A less detailed, higher level screening framework (Figure 4) that is
informed by the more detailed thyroid AOP network and restricted to endpoints that are available for
regulatory decision-making can be useful for integrating HTS data, and other KEs or biomarkers, with

endpoints included in the EDSP Tier 1 screening battery.

Many of the MIEs identified in recent reviews (Murk et al. 2013; OECD, 2014) can be mapped to
an AOP network for the thyroid axis that includes KEs and KE relationships that may culminate in apical
responses in human health and wildlife models (Figure 3). Currently available HTS assays to measure
chemical-induced MIEs are highlighted in purple, and endpoints collected in EDSP Tier 1 screening
assays are highlighted in red. The purpose of this AOP network is not to recapitulate more formalized
thyroid AQOPs (e.g., those captured on the AQOP-Wiki). Rather, Figure 3 is intended to illustrate how EPA is
organizing data into a logical and cohesive framework that links mechanistic data to adverse outcomes
needed for regulatory decision-making. Thus, an adverse outcome (e.g., AMA: altered hind limb length
(HLL), snout-vent length (SVL), time to metamorphosis) may be the result of interactions with many
MIEs, and conversely, a single MIE may be linked to many adverse outcomes that occur in specific

vertebrate models and life-stages. Describing KE relationships between MIEs and adverse outcomes can
15
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be helpful in clarifying data gaps and identifying research needs for regulatory decision-making. For
example, there are a number of MIEs not highlighted in purple for which HTS assays are not currently
available even though in some of these cases lower throughput in vitro assays have been developed
(e.g., iodotyrosine deiodinase (YD) interactions). Unlike more formalized AOPs that seek to characterize
the strength of evidence, the linkages connecting MIEs, KEs, and AQOs in Figures 3 and 4 may be
considered hypothesized, biologically plausible relationships that vary depending on the strength of the
empirical data. Similarly, there are potential adverse outcomes that may be captured in the EDSP Tier 1
screening battery (AMA endpoint) but other effects reported in the scientific literature not captured by

EDSP assays that may provide data relevant for decision-making.

Thyroid AOP networks for the thyroid pathway also can be used to clarify MIEs and KEs that are
common to multiple taxa but that may lead to different adverse outcomes depending on the animal. For
example, inhibition of D1 may lead to reduced levels of serum and tissue TH that may alter downstream
genomic activity leading to consequent AQOs that vary by test model {e.g., mammals = altered
neurodevelopment; amphibian = impaired metamorphosis; fish = reduced survival). These AOs may be
captured as part of the EDSP screening battery or OSRI. Similarly, thyroid AOP networks can be used to
shows points where several MIEs converge at a shared KE. These shared KEs may be particularly useful
in identifying biomarkers that could be used in designing screening assays and building computational
models. For example, several of the MIEs may induce a cascade of KEs that proceed through decreased
concentrations of TH in serum and target tissues, thereby providing a potentially relevant biomarker for
use in research design, chemical screening, and predictive modeling. The male and female pubertal
assays include circulating thyroxine (T4) and thyroid-stimulating hormone as endpoints to indicate
potential effects on thyroid status. Serum and tissue T4 concentrations are key biomarkers that can be
evaluated in the design of additional studies to fill data gaps or further clarify chemical effects on poorly

understood thyroid pathways (DeVito et al. 1999).
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Though informative for identifying research needs and understanding causal linkages, the
thyroid AOP network in Figure 3 includes key events and key event relationships for which data are not
currently available for a WoE evaluation of a chemical’s potential interaction with the thyroid axis.
However, it may be possible to develop WoE evaluations that suggest a possible endocrine-specific
mechanism for an observed in vivo finding based on data from in vitro HTS assays that may indicate
perturbation of a thyroid-related MIE, along with EDSP Tier 1 assay information that demonstrate apical
effects that may be thyroid-related (Figure 4). The reduced thyroid AOP network in Figure 4 is limited to
data that may be available for evaluating thyroid bioactivity using these two data types, HTS assays and
EDSP Tier 1 assays, in a regulatory context. In addition, all available data including information from
published literature can be similarly evaluated prior to WoE evaluations. Though the putative AOP
network illustrated in Figure 4 is highly reductive and an abbreviated representation of many complex
biological processes, it is nonetheless useful for organizing and integrating diverse data available in a

regulatory context.

Regulatory data gaps and uncertainties (Figure 4) can also be captured in this type of putative
AOQOP network where research suggests MIE or KE may be important but assays are not currently
available for that endpoint. For example, chemical mediated increases in TH catabolism and clearance
are an important MOA of thyroid perturbation (Figure 4; Table 3; supplement). ToxCast HTS assays
target some MIEs that may provide indirect links (e.g., hepatic Pl nuclear receptor activation); however,
HTS assays do not measure chemical interactions with this MIE directly and in vivo Tier 1 assays do not
evaluate these endpoints (beyond changes in liver weight). With continuing advances in the availability
and reliability of HTS methods, it will be possible to expand the putative AOP network for thyroid
bioactivity to allow for interrogation of additional molecular targets and apical responses, and to further

clarify data gaps as data describing the biological convergence of KEs advances.
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Another useful tool of thyroid ACOP networks {Figures 3 and 4) relates to characterizing species
sensitivities to inform chemical screening particularly when evaluating the extent to which data from
one animal model can be used to predict potential adverse outcomes in another. Based on the
conserved structural and functional features of the vertebrate thyroid system, the EDSP Tier 1 AMA was
intended to be a sensitive screen for chemical effects on the vertebrate thyroid system, rather than an
organism-specific ecotoxicity test. Though thyroid histopathology in the AMA has been found to be a
reliable endpoint to detect chemical mediated reductions in serum TH, gross developmental changes
(e.g., hind limb length) have been found to be less sensitive to hypothyroidism likely due to
compensatory feedbacks and tissue plasticity (Pickford 2010). In addition to toxicokinetic and
toxicodynamic differences in chemical metabolism, there are differences in thyroid physioclogy between
mammals and amphibians so it is possible that effects between the AMA and rodent pubertal assays
under the Tier 1 screening battery may not always align. These physiological differences include, but are
not limited to: differences in thyroid hormone stability and kinetics due to differences in predominant
binding proteins; differences in thyroid hormone storage capacity in follicular cells; differences in
nuclear receptor isoforms expressed across species (Paul et al. 2013; Omiecinksi et al 2011); and
differences in the predominant mechanisms of thyroid hormone clearance. These differences in thyroid
physiology may manifest in different responses in the AMA and pubertal assays. A systematic review to
identify thyroid reference chemicals for EDSP Tier 1 and Tier 1-like assays found that of 35 candidate
compounds identified and tested in all three thyroid-related EDSP Tier 1 assays {(Male/Female Pubertals,
AMA), about half {19 chemicals) were found to be ‘positive’ for thyroid pathway effects in just one of
three assays with differences in potency across vertebrate model and sex (Wegner et al. 2016). A clear
difficulty in constructing a WoE is understanding what might be relevant across species, and the
incorporation of HTS data on MIE perturbation may provide a means of evaluating species differences in
thyroid-related outcomes by enabling an assessment of the relevance of chemical perturbation of these

MIEs, which may demonstrate species-specific expression or activity profiles, across different species.
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This type of cross-species assessment, focusing on the MIE and early KEs, is commonly performed in
support of MOA-based human health risk assessment for cancer and non-cancer MOAs (Rouquie et al.,

2014; Tinwell et al., 2014; Papineni et al., 2015; Rasoulpour et al., 2015; Ellis-Hutchings et al, 2014).

Differences in the expression and activity of deiodinases across animal models, which represent
MIEs within the AOP network, provide an example of how differences in thyroid physiology might be
relevant to chemical mediated thyroid perturbations. D2 is expressed abundantly in the developing
brains of both mammals (Croteau et al. 1996) and amphibians (Dubois et al. 2006), and studies suggest
its role in maintaining TH homeostasis in brain neurons of developing rodents (Galton et al. 2007;
Guadano-Ferraz et al. 1999) and in controlling amphibian metamorphosis (Becker et al. 1997; Cai and
Brown 2004). In contrast, however, the importance of D2 in maintaining TH homeostasis and in
consequent physiological actions in the developing fish brain is much less clear (Frith and Eales 1996;
Johnson and Lema 2011; Noyes et al. 2013). Similarly, D1 has been localized to the livers of mammals
and fish but data suggest that hepatic T4 deiodination to T3 is catalyzed largely by D1 in mammals and
D2 in fishes (Gereben et al. 2008; Kohrle 2000; Mol et al. 1993; Orozco and Valverde-R 2005). Finally, the
model goitrogen PTU has been shown to inhibit D1 in mammals and birds but appears to have less
specificity in inhibiting D1 in amphibians and fish {Galton 2005; Kohrle 1999). Thus, chemical interactions
with deiodinases could lead to a cascade of differential events depending on the species {and lifestage),
or alternatively might produce different adverse outcomes but with a shared MOA. Indeed, it is unlikely
a chemical will elicit the same response across multiple taxa, sexes, and life stages, except perhaps the
most potently thyroid-active chemicals (Wegner et al. 2016). AOP networks provide a construct for
capturing these types of potential species sensitivities by linking HTS data and other mechanistic KEs to
model-specific adverse outcomes. This type of information can in turn inform when screens for thyroid
bioactivity could benefit from combining lines of evidence across multiple species or alternatively when

species-specific data should be separated for regulatory decision-making.
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To screen chemicals for interactions with the ER, EPA has developed a ToxCast ER model that
integrates results from 18 high-throughput in vitro assays that provide information at a number of
points in the ER signaling pathway and rely on a variety of assay technologies (Judson et al. 2015). The
redundancy and diversity of HTS technologies provides a great deal of confidence in “positive” and
“negative” chemical interactions and allows discrimination of false positive signals. The ToxCast ER
model was evaluated as a potential alternative for the three Tier 1 assays targeting chemical
interactions with the ER (i.e., ER Binding/OCSPP 890.1250; ER Transcriptional Activation (ERTA)/OCSPP
£90.1300); and Uterotrophic Assay/OCSPP 890.1600), and predicted the activity for a structurally
diverse set of reference chemicals with an overall accuracy of 93% and a false negative rate of 7%
(Browne et al. 2015; U.S.EPA 2015a). Based on this predictive performance, the Agency is now accepting
ToxCast ER model data as an alternative to the ER-targeted assays in the Tier 1 battery. A similar
computational model based on 11 AR HTS assays has been developed and the balanced accuracy of this

model against agonist and antagonist reference chemicals is >95% (Kleinstreuer et al., 2016).

Though in vitro HTS assays are available for several MIEs in the thyroid pathway, there are not
multiple assays for most MIEs (as is the case for ER and AR), and there are not existing Tier 1 in vitro
assays to replace with these HTS alternatives. For example, in addition to the HTS assay for TPO
inhibition a medium-throughput orthogonal GUA oxidation assay is also available (Chang and Doerge
2000; Paul-Friedman et al. 2016; Paul et al. 2013). Thus, for an MIE like TPO inhibition, two screening
assays with medium to high throughput capacities are available. However, for most MIEs in the thyroid
pathway multiple in vitro assays are not available (Murk et al., 2013; OECD 2014). Moving ahead,
thyroid-related HTS assay data may be helpful not only for prediction of possible effects, but also for
prioritization applications, despite some uncertainty regarding the potential for a chemical to elicit
activity at a particular MIE target. Development of confirmatory, more biologically complex assays that

link MIEs with early KEs may increase the confidence in results and the utility of in vitro assays for
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prioritizing chemicals for additional thyroid activity screening. Herein the HTS assays that are relevant to
EDSP Tier 1 assays with measures of thyroid disruption clearly enables the use of these HTS data in WoE

assessments.in vitroin vivoin vivo

Looking Forward — Building Predictive Models

AQOP networks for the thyroid pathway {Figures 3 and 4) provide the organizational context for
integrating new technologies into the EDSP Tier 1 screening battery, and provide a flexible construct for
integrating additional in vitro HTS technologies as they become available. With these promising
advances, there is a great deal of interest in building predictive models using computational toxicology
methods as a more efficient means of prioritizing the universe of chemicals for testing under the Tier 1

battery and in carrying out WoE evaluations of chemicals for testing under EDSP Tier 2.

AQOP networks for the thyroid pathway can be used in building predictive models by defining the
causal and/or correlative linkages from in vitro HTS data to KEs and/or adverse outcomes measured in
animal testing. Information from AOPs can be used to develop a fit-for-purpose approach for
characterization of the performance of in vitro HTS assays or models that integrate these assays to
predict these downstream KEs or adverse outcomes. Models that combine information from assays that
measure potential effects on different MIEs will be useful in creating a prioritization scheme for thyroid

pathway bioactivity.

Initial computational modeling approaches could integrate HTS results for screening at multiple
MIEs in order to generate a priority score or prediction regarding the likelihood that a chemical may be
capable of perturbing the thyroid pathway. Developing models that predict adverse outcomes from HTS
data for MIEs will be more challenging due to gaps in complete understanding of all of the quantitative
key event relationships (Becker et al., 2015 Reg Tox Pharm) within the thyroid AOP network. Though

gualitative evidence is generally strong that the MIEs listed in Table 3 relate to thyroid hormone
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perturbation, quantitative understanding of how changes in some of the MIEs, particularly as indicated
by HTS assay results, relate to changes in KEs (e.g., serum TH), and in turn how changes in TH
concentrations may manifest in impacts on development and maturation, is incomplete. As quantitative
data become available, additional modeling approaches to further characterize MIE-KE relationships in
the thyroid AOP network could conceivably be implemented to predict thyroid-related adverse
outcomes with associated uncertainty. Development of models that integrate HTS assay data for
multiple MIEs will be an important step to enhance prioritization of chemicals for further screening and
evaluation under the EDSP. For example, one of the challenges in evaluating endocrine responses to
chemicals centers on understanding the time course of chemical effects. These quantitative challenges
are not unique to the thyroid pathway and have been examined recently with chemicals that act on the
ER and AR (Ankley and Villeneuve 2015). The absence of an apical outcome does not necessarily negate
the predictive value of an upstream assay. Rather, it may be caused by testing for an endpoint too early
in the time course or at a dose that was too low to elicit the adverse outcome. The converse can also be

true whereby adverse outcomes are observed without observations of upstream KEs.

Conclusions
Several in vitro HTS assays are now available to help understand the potential for chemicals to

interact with the thyroid axis pathway that will be helpful to for screening chemicals for thyroid activity.
Because MIEs targeted by the existing and developing HTS methods were not included as part of the
EDSP Tier 1 battery, relationships between the new HTS data being generated and existing animal-based
data collected as part of the EDSP Tier 1 screening battery or from the published literature are discussed
in this work. An AOP network describing the relationships between known thyroid-related AOPs and
endpoints measured in EDSP Tier 1 assays is presented to demonstrate how new assay data and models

may be used in prioritization and WoE applications.
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520 Tables

521  Table 1. U.S. EPA Endocrine Disruptor Screening Program (EDSP) battery of 11 Tier 1 assays to screen
522 chemicals for estrogen, androgen, and thyroid bioactivity, and Tier 2 assays for identifying adverse

523 effects and dose-response relationships. Consistent with Adverse Qutcome Pathways (AOPs), levels of
524 increasing biological complexity from molecular interactions to individual and population level effects
525 can be represented by the Tier 1 and 2 assays with the exception of the thyroid pathway, which lacks
526 coverage of toxicity MOAs. E+ = estrogenic, E- = Anti-estrogenic, A+ = androgenic, A- = anti-androgenic,
527 HPT axis = hypothalamic pituitary thyroid axis, EOGRT = extended one generation reproductive test,
528 MEOGRT = medaka extended one generation reproductive test, LAGDA = larval amphibian growth and
529 development assay, JQTT = Japanese quail toxicity test. Asterisk indicates EPA test guidelines

530 harmonized with the OECD.
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Table 2. Estrogen, androgen, and thyroid hormone lifecycles.

Lifecycle Estrogen Androgen Thyroid Hormone

Biosynthesis Steroidogenesis (e.g., P450scc, aromatase, lodine, NIS, TPO, IYD,
17B-HSD, 5a-reductase) pendrin, DUOX
Plasma SHBG, albumin TTR, TBG, albumin
Transport
Homeostasis GnRH, LHr, FSHr TRHr, TSHr, Deiodinases,
MCT8, MCT10, OATP1C1

Receptor ER AR TR
Catabolism SULTs, UDPGTs, MRPs, p-glycoproteins (Mdr1)

and Excretion

17B-HSD = 17p-hydroxysteroid dehydrogenase; AR = androgen receptor; DUOX = Dual oxidase; ER =
Estrogen receptor; FSHr = Follicle stimulating hormone receptor; GnRH = gonadotropin releasing
hormone; IYD = lodotyrosine deiodinase; LHr = Luteinizing hormone receptor; MCT = Monocarboxylase
transporter; NIS = Sodium-iodide symporter; OATP = Organic anion transporter polypeptide; P450 scc =
P450 enzymes, cholesterol side-chain cleavage; SHBG = Sex hormone binding globulin; SULTs =
sulfotransferase; TBG = Thyroid binding globulin; TTR = Transthyretin; TRHr = Thyrotropin releasing
hormone receptor; TPO = thyroperoxidase; TR = thyroid hormone receptor; UDPGT = Uridine
diphosphate glucuronosyltransferase.
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543  Table 3. Identification of potential molecular targets of chemical-induced thyroid bioactivity. The

544  toxicological relevance is characterized by current evidence that the molecular interaction regulates
545 important biological processes and whether it has shown to be perturbed by environmental chemicals
546  (Murk et al. 2013; OECD 2014).

Cantrols synthesis and release of T5H: TRH mutations lead to hypothyroidism No
reports of environmental chemical impacts although research is limited

TRH Receptor Existing

Controls thyrocyte functioning; TSH mutations can cause hypo- and hyper-
thyroidism. No reports of chemical impacts although research is limited
Regulates jodide uptake in thyroid and is critical Tor TH synthesis. Inhibition of
NiStiadide transport impacts TH synthesisl Known tarset for environmental Existing
chemicals.
ene mutations of pendrin can cause hearing loss, vestibular weakness, an
Pendrin sometimes goiter, but not necessarily hypothyroidism. No reports of R&D
environmental chemical impacts although research is limited.

Generates peroxide necessary for TH synthesis: DUOX mutations result in

TSH Receptor Existing

Sedium:lodide
Symporter (NS}

Dual Oxidase

organification defects and congenital hypothyroidism. N6 reports of R&D
(DUOX) . L G
envitonmental chemical impacts although research is limited,
Thyroperoxidase Only enzyme that catalyzes formation of THs. TPO is known target for Existin
(TPO} xenobiotics, and there is a well-accepted AOP based on TPO inhibition as the MIE. g

TIR and TBG are major serum transporters of TH in vertebrates) TTR mutations
alter TH kinetics and lower brain levels of T4, TTR and to a lesser extent TBG, can | Existing

Serum Transport
Proteins

MCTS8, MCT10, and OATP1C1 regulate cellular availability of TH. MCT8 mutations
produce hypothyroidism and severe neurological impairments. Limited evidence Promising

Membrane
Transporters

suggests that some chemicals may impact their expression and functioning

ladothyronine Control TH homeaostasis and the activation and inactivation of T4 in a tissue.
i Deiodinase (DIO] specitic ang temporal manner. Chemicals can directly impact DIO functioning.

Promising

Scavenges iodide in the thyroid by catalyzing deiodination T1 and T2. Mutations
lodotyrosine in IYD result in hypothyroidism. Limited evidence that chemicals impair IYD; may R&D
Deiodinase (IYD}) be more important when dietary iodine is low or concomitant exposure to NIS

inhibitors

Mediate Phase 1. 2. and 2 metabolism and disposition of endogenous and
Hepatic Nuclear exogenous chemicals, including environmental chemicals. and contribute the TH
Receptors {NRs) homeostasis. Known molecular targets for a wide variety of environmental
themicals
Sulfation and glucuronidation are important hepatic and nephric pathways that
regulate TH catabolism. Known molecular targets for a wide variety of chemicals Promising
and are a well-accepted AOP for this based on this MIE.
Alanine side-chains of 14 and 13 can be metabolized by oxidative decarboxylation
or deamination; deamination produces thyroacetic acids and decarboxlation
prodices thyroanimines. Biological conseguences ol inhibiting are not well
described. No reports of environmental chemical impacts.
T3-activated transcription factors of which there are two major subtypes TRa and
TRB that show tissue-specific and temporal functioning. Some chemicals bind to
TRs. However, screens of large chemical libraries have revealed a low frequency
hit rate, suggesting that binding may be restricted to a limited set of structures.
Many TH signaling pathways are mediated by transcription of TR responsive
genes and are critical to normal development and organ system functioning,
Somie chemicals may modify transcription by altering TR binding, co factor
recruitment, or TRE binding. Screens of [arge chemical libraries have revealed g
low frequency hit rate, suggesting that perturbed transactivation may be
restricted to o himited et of structures
547 Toxicological relevance is characterized by evidence that the MIE regulates biologically important processes that
548 when disturbed can lead to adverse outcome(s), as well as any evidence that chemicals interact with the MIE.

Existing

Sulfation and
Glucuronidation

Alanine Side-Chain

TH Receptor Existing

TH Transcription Existing
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549  Figures Legend

550  Figure 1. An Adverse OQutcome Pathway (AOP) that is initiated with a molecular initiating event (MIE)
551 and terminates in an adverse outcome (AQ) that is linked by a series of intermediate key events. AOs at
552  the organism level are used in human health risk assessment, and typically with plausible linkages

553 (dotted line) at the population level for use in ecological risk assessment. Toxicity Pathways may be
554  encompassed in an AOP and include MIEs and KEs that are plausibly linked to downstream apical

555 responses.

556 Figure 2. Generalized overview of TH regulation and signaling in vertebrates with points along the

557 central hypothalamic-pituitary-thyroid (HPT) and peripheral axes that have shown to be perturbed by
558 environmental chemicals (red stars). TRH = thyrotropin releasing hormone; TSH = thyroid stimulating
559 hormone; T4 =thyroxine; T3 = 3,3’,5-triiodothyronine; rT3 = 3,3',5'-reverse T3; T2 = 3,3'-diiodothyronine;
560 T1=monoiodothyronine; UDPGT = uridine diphosphate glucuronosyl transferase; SULT =

561 sulfotransferase; TH-G = glucuronidated thyroid hormone; TH-S = sulfated thyroid hormone; Mrp =

562 multidrug resistance associated protein; Mdrl = multidrug resistance protein 1 or P-glycoproteins; MCT
563 = monocarboxylate transporter; OATP = organic anion transport polypeptide; TR = thyroid hormone

564 receptor; RXR = retinoic x receptor.

565 Figure 3. Adverse Qutcome Pathway (AOP) network for chemically induced thyroid bioactivity showing
566  theintegration of multiple individual AQPs under development and proposed. Biological linkages

567 described may be informed by in vitro, in vivo, or computational data, and may be causal, inferential, or
568 putative depending on the strength of the evidence. Boxes with red borders represent junctures and
569 apical responses that are targeted by the EDSP Tier 1 screening battery, and showing that no MIEs are
570 covered by the Tier 1 battery. Boxes with purple borders represent current MIEs with in vitro high-
571  throughput screening (HTS) assays that have demonstrated reliability and are available for use in EDSP
572  thyroid bioactivity screens; ToxCast assays are denoted with asterisks. Solid lines represent established
573 linkages with quantitative or semi-quantitative data. Dotted lines represent plausible linkages with
574 limited evidence. **HTS assays targeting D1 binding are further along in development than those

575 targeting D2.

576 Figure 4. Generalized AOP network (putative) for the thyroid bioactivity pathway integrating in vitro high
577  throughput screening (HTS) assays and in vivo EDSP Tier1/2 battery. The AOP network commences with
578 any of several molecular initiating events (MIE) that can be predicted by emerging HTS assays with

579 potential downstream linkages to intermediate key events {(KEs) that culminate in adverse outcomes
580 (AOs) identified in vivo EDSP testing. TRHr = thyrotropin releasing hormone receptor; TSH = thyroid

581 stimulating hormone receptor; T4 =thyroxine; T3 = 3,3',5-triiodothyronine; UDPGT = uridinediphosphate
582  glucuronosyl transferase; SULT = sulfotransferase; NIS = sodium-iodide symporter; AMA = amphibian
583 metamorphosis assay; EOGRT = extended one generation reproductive test; LAGDA = larval amphibian
584  growth and development assay; JQTT = Japanese quail toxicity test.
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